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A B S T R A C T

While an effect of urban vegetation configuration on land surface temperature (LST) has been identified
worldwide, the mechanism underlying configuration-LST relationships remains unclear as most urban LST data
only resolve to neighborhood scales. Here we ask: does urban vegetation provide more cooling arranged in fewer
and larger patches or more numerous but smaller patches in the Phoenix metropolitan area, Arizona, USA? We
hypothesized the combination of energy exchanges between adjacent patches and microclimate cooling induced
by vegetation are key processes determining how configuration affects LST. Using high resolution thermal data
(7m), we evaluated predictions from this hypothesis through a multiple scale analysis spanning from within
individual patches to among neighborhoods. We found tree cover is the dominant factor influencing urban
cooling and that tree and grass configurations also substantially affect cooling, with effects generally exceeding
40% that of tree cover. The effects of tree and grass cover and configuration on LST were scale-dependent and
reflect differences from within individual patches to among neighborhoods. In general, greater edge density and
shape complexities of vegetation patches cool the landscape but may warm individual vegetation patches.
Conversely, increasing individual vegetation patch size and reducing shape complexity may lead to cooler ve-
getation patches but a hotter landscape. Our findings suggest more edge area strengthens energy exchanges
between vegetation and surroundings and more vegetation core area lead to greater cooling within individual
patches. Through applications of high resolution thermal remote sensing, we are able to more directly connect
effects of land cover composition and configuration to LST distributions that can help cities plan and evaluate
local climate adaptation strategies.

1. Introduction

Mitigating urban heat is increasingly valued for decreasing human
health vulnerabilities and energy use (Peng et al., 2018; Jenerette,
2018; McDonald et al., 2019). Green infrastructure (GI), including
green roofs and urban greenspace, provides urban cooling of both air
and land surface temperatures (LST), through shading, higher evapo-
transpiration rates, and lower emissivity than built structures (Bowler
et al., 2010; Weng et al., 2004). While vegetation cooling effects are
widespread, the magnitude of vegetation cooling varies dramatically
both among and within cities throughout the world (Kong et al., 2014;
Li et al., 2012; Skelhorn et al., 2014; Tayyebi and Jenerette, 2016;
Shiflett et al., 2017). Vegetation configuration, or spatial pattern, has
been identified as a prominent factor contributing to variation in urban
cooling benefits (Fan et al., 2015; Kong et al., 2014; Li et al., 2013; Yan

et al., 2018; Myint et al., 2015; Zhou et al., 2011, 2017). While con-
figuration effects are generally more limited in the magnitude of
cooling than the effects of vegetation density, configuration can have
prominent effects in cities such as Phoenix, AZ (Li et al., 2016) and
Sacramento, CA (Zhou et al., 2017). However, configuration effects are
varied in the direction of effect: increasing landscape fragmentation is
in some cases associated with greater cooling (Zhou et al., 2011; Li
et al., 2011; Fan et al., 2015) while in other cases greater warming
(Zhang et al., 2009; Connors et al., 2012). Differences in urban climate
responses to vegetation configuration suggest large uncertainties re-
main in identifying the mechanisms underlying how configuration af-
fects LST. Because of these uncertainties, at present we can’t answer a
seemingly straightforward question: does urban vegetation provide
more cooling arranged in fewer and larger patches or more numerous
but smaller patches?
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As a working hypothesis to explain the effects of vegetation con-
figuration on urban temperatures we consider two processes, energy
exchanges across patch edges and microclimate cooling within vege-
tated patch core areas, may be simultaneously influencing the role of
vegetation configuration on LST and contributing to uncertainty in its
effects. Vegetation patches often exhibit intra-patch differences be-
tween a central core area that is relatively stable and the edge areas that
are affected by the surrounding environment (Jiao et al., 2017;
Laurance and Yensen, 1991). Energy exchanges between vegetation and
adjacent patches can influence microclimates both within vegetated
and non-vegetated patches. Proceeding from the edge to the interior of
a vegetation patch, research in forests have found increasing effects of
vegetation microclimate, which leads to cooler temperature within the
vegetated core (Matlack, 1994). Similarly, residential areas adjacent to
rice paddies had reduced air temperatures that increased non-linearly
with distance into the residential patch (Yokohari et al., 2001). Al-
though less frequently evaluated, edges are also locations where vege-
tation cooling effects may propagate into the neighboring built patches
and potentially cool the larger landscape. Larger but fewer vegetation
patches may lead to cooler vegetation but the remaining landscape is
warmer because of fewer vegetation edges for energy exchanges. In
contrast, more numerous but smaller vegetation patches may lead to
warmer vegetation but a cooler remaining landscape because of re-
duced microclimate cooling but increased exchanges of energy with
adjacent patches. The combination of energy exchange and micro-
climate cooling processes may be stronger in tree than grass dominated
patches as shading by trees may induce larger cooling effects than
transpiration alone.

Implicit in energy exchange and microclimate cooling effects is re-
cognition that scale affects vegetation configuration influences on LST.
Research into scaling effects has been limited by the moderate resolu-
tion of most LST data: LST pixel sizes typically range from 90m,
Landsat data, to 1 km, MODIS data. Within a city, moderate resolution
LST data includes extensively mixed land covers and extensive edges
between patches within individual pixels. Energy flows between pat-
ches within a single moderate resolution pixel may confound the eva-
luation of temperature effects at scales where urban land cover varia-
bility occurs (Zhou et al., 2011). In some studies, multiple-scale
research has been achieved by upscaling or downscaling the original
moderate resolution LST data (Li et al., 2013; Song et al., 2014; Weng
et al., 2008, 2004; Weng and Quattrochi, 2006; Zhou et al., 2017).
These findings have shown increasing scale can increase correlations
between LST and vegetation density (Song et al., 2014; Fan et al., 2015;
Zhou et al., 2017). Correlations between LST and some configuration
metrics can show a peaked response at intermediate scales (Kong et al.,
2014; Weng, 2009; Weng et al., 2008). In addition, for one metric, such
as patch density, the magnitudes of correlations and even the directions

of correlation may differs among studies (Zhang et al., 2009; Li et al.,
2013). Although high resolution urban LST data are increasingly be-
coming available (Leuzinger et al., 2010; Jenerette et al., 2016), few
studies have been conducted with thermal resolution less than 90m,
which restricts a fine-scale evaluation of thermal distributions (Coutts
et al., 2016). Hence, evaluating micro-scale LST-vegetation interaction
with both fine resolution land cover and LST data has been noted as an
important research goal for improved understanding of the biophysical
causes to urban heat vulnerability (Deng and Wu, 2013; Jenerette et al.,
2016; Song et al., 2014; Zhang et al., 2013). With these contrasting
results, more comprehensive studies of urban configuration at finer
scales are needed to improve models of landscape pattern and climate
relationships.

To address uncertainties in vegetation configuration effects along
with changing scales on urban climate distributions, we asked: how
does vegetation configuration affect urban LST from scales within an
individual vegetation patch to the entire residential neighborhood? We
answer this question using new analyses of existing high resolution
airborne LST (7m) and NAIP vegetation cover (1 m) data sets collected
from Phoenix, AZ, USA. Phoenix serves as a hot and dry climate end-
point that can be used as a model for high temperature urbanization.
We tested predictions from the energy exchange and microclimate
cooling hypotheses that 1) more edges and shape complexities of ve-
getation landscape reduce landscape LST because it promotes energy
exchange between cooler vegetation and hotter impervious surface, and
that 2) within vegetation patches a gradient of temperatures will reflect
warmer edges and cooler vegetation interiors. We evaluated these
predictions across multiple scales ranging from within an individual
vegetation patch to across a network of neighborhoods. The results
provide a needed foundation for linking fine scale vegetation-LST in-
teractions to broader scales and provide useful information for planning
green infrastructure for improved urban climate resilience.

2. Study area and datasets

2.1. Study area

The Phoenix metropolitan area (centered at 33° 24′20″N, 112°
5′17″W) of Arizona, USA (Fig. 1) is a well-studied urban ecological and
climate system (Chow et al., 2012; Grimm and Redman, 2004). Phoenix
is located in a subtropical desert climate (Köppen Climate
Classification, 1884), and features substantial variation in vegetation
and built-up areas associated with residential dwellings. Historically,
there are 107 days annually with a high air temperature of at least 38 °C
and the number of these high temperature days are increasing (Ruddell
et al., 2013). With a rapidly expanding population of approximately 4.6
million residents in 2015 (Jenerette and Wu, 2001), the region has one

Fig. 1. The neighborhoods and associated Land Cover/LST map located in Phoenix metropolitan area of Arizona.
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of the fastest growing urban heat islands in the United States (Stone
et al., 2012). As a high temperature arid site with rapid population
growth, Phoenix serves a model system near an endpoint of climate
conditions.

Our analysis used a sample of 35 neighborhoods from Phoenix Area
Social Survey (PASS) of 2011 stratified by location (urban, suburban,
fringe) and median household income (Jenerette et al., 2016). The
PASS neighborhoods were selected mostly from ongoing long-term
monitoring sites in Phoenix metropolitan area (Grimm and Redman,
2004), and the boundaries of PASS neighborhoods were defined using
U.S. Census Bureau block groups (https://www.census.gov/geo/maps-
data/data/tiger-cart-boundary.html). The neighborhoods are a physical
space following census derived boundaries. The selected 35 neighbor-
hoods with total area ranging from 55.1 to 711.5 ha, and from 6.6 to
40% vegetation percentage, and from 44.5 to 55.1 °C mean LST (Fig. 1).

2.2. Data sets

2.2.1. NAIP-based land cover map
A land cover map for this study was derived from National

Agriculture Imagery Program (NAIP) imagery (Li et al., 2014). NAIP
acquires aerial imagery during the agricultural growing seasons in the
continental U.S. at a 1m ground sample distance (GSD) with a hor-
izontal accuracy that matches within six meters of photo-identifiable
ground control points, which are used during image inspection. 90% of
the NAIP data used in our study were acquired from June 2010, and the
remainder from August to September 2010, with four multiple spectral
bands at a spatial resolution of 1m. In comparing these data with
thermal data collected in 2011, we expected limited change from 2010
and 2011 as all neighborhoods had been developed for more than a
decade. The classification followed the object-based classification ap-
proach (Baatz et al., 2008; Benz et al., 2004) in eCognition Developer
(http://www.ecognition.com/suite/ecognition-developer), which em-
ployed an expert knowledge decision ruleset and incorporates the ca-
dastral GIS vector layer as auxiliary data. The NAIP imagery were
classified into 13 land cover/use classes with the classification overall
accuracy of 92% and a kappa statistic of 0.91, and more details can be
found in Li et al. (2014). Since one of our objectives is to quantify the
differences of cooling effects of trees and grass, we merged tree, shrub
and orchard into the new tree class, and grass and farmland were
combined into the new grass class based on existing classes of Li et al.
(2014) for further analysis (Fig. 1).

2.2.2. Land surface temperature
Daytime airborne LST data were derived from the MODIS/ASTER

Airborne Simulator (MASTER) data. The whole Phoenix metropolitan
collection campaign was conducted during July 12–13 in 2011
(Jenerette et al., 2016) with data collected from the selected neigh-
borhoods for our analysis in the late morning from 10 am to 12 pm of
July 12. During the campaign, the instrument was mounted on a
Beechcraft B-200 aircraft and flew 18 tract lines in two days to obtain
high spatial resolution data in Phoenix metropolitan area. The MASTER
sensor acquires data over the visible through mid-infrared wavelengths
(0.46–12.82 μm) in 50 spectral bands (Hook et al., 2001) with spatial
resolution at approximately 7m/pixel. A stable weather pattern pre-
vailed during the week of July 12 that enabled the collection from an
approximate uniform meteorological condition. During this campaign
period, mean daily maximum air temperature was 40.1 °C and differed
less than 1.3 °C, and two weather stations in study area indicate the
maximum wind speed was about 4m/s with no detected wind gust
during sampling days. A temperature trend in land surfaces from be-
ginning to end of data collection was not observed–we expect the three
dimensional surface properties had much larger influence than the time
within our sampling period. Likely overlapping images may help in
future for better temporal correction (Tayyebi and Jenerette, 2018).

MASTER data were acquired from (http://masterprojects.jpl.nasa.

gov/L2_Products), which had been initially post-processed to level 2B.
ENVI/IDL was used to perform all processing of the MASTER data.
Atmospheric correction of the mid-infrared wavelength data was ac-
complished using an in-scene atmospheric compensation technique
(Johnson and Young, 1998) to obtain apparent surface reflectance,
temperature, and emissivity. An emissivity normalization approach
(Kealy and Hook, 1993) was used to obtain LST from the MASTER data
that used multiple thermal bands to calculate both the temperature and
emissivity of each pixel. Atmospheric correction of the visible through
shortwave infrared wavelength data was accomplished using the quick
atmospheric correction (QUAC) algorithm (Bernstein et al., 2005)
within ENVI/IDL.

The geometric match between data layers is critical for analysis of
high resolution data sets and a subsequent geocorrection of LST layers
using the land cover map as a reference was conducted in ENVI/IDL.
50–100 pairs of points were selected according to the size of neigh-
borhoods and allowing RMS within 0.5. Three neighborhoods failed to
meet the requirement of RMS < 0.5 after several geometrical correc-
tion attempts; these neighborhoods were excluded for all analyses. After
geocorrection, the spatial resolution of LST layer was resampled to 1m
to be consistent with that of NAIP land cover data (Fig. 1). More details
on LST calculation can be found in Jenerette et al. (2016).

3. Analysis

While many factors affect the distribution of urban LST, our work
here focused on evaluating vegetation configuration effects to LST at
multiple scales. Throughout all analyses trees and grass patches were
evaluated separately. We employed four landscape metrics to quantify
vegetation configuration and/or spatial pattern. Three LST indices,
Mean LST (Mean LST), Maximum LST (Max LST), and Minimum LST
(Min LST), were calculated at each scale and/or analytical unit. Finally,
we conducted Pearson correlation analysis and multiple regression
analysis to explore the effects of vegetation configuration on LST, and
also the scale relations of the effects.

3.1. Multiple scales approach

We conducted the analysis at three scales: neighborhood, circular
plot, and patch (Fig. 2). The circular plot scale included seven different
sizes of circular plots used to generate a scaling assessment. This mul-
tiple-scale approach was meant to explicitly examine the role of spatial
structure. A total of 35 neighborhoods selected from PASS boundaries
were deployed at the neighborhood level. For scaling assessments, we
selected a subset of five neighborhoods from the 35 neighborhoods for
plot-scale analysis based on three criteria. First, we selected neighbor-
hoods large enough to allow spatial sub-sampling (Fig. 1). Second,
neighborhoods that spanned the range of mean LST and vegetation
cover among the 35 neighborhoods. Third, the selected neighborhoods
were spatially distributed across the entire metropolitan area. To
evaluate scaling relationships, seven different plot sizes (25, 40, 60, 90,
150, 200, 250m) were selected for a scale gradient at circular plot
scale. The plot sizes were selected to correspond with (or adjusted from)
the spatial resolution of multispectral/thermal bands of common re-
mote sensing products, e.g. high altitude AVIRIS (20m), Landsat mul-
tispectral bands (30m), planned HyspIRI (60m), ASTER thermal in-
frared (90m), Landsat-5 thermal infrared (120m), and MODIS infrared
(250m). 100 plots for each plot size and total 700 circular plots were
randomly generated in each neighborhood. The random points and
multiple plot sizes were created using Arcmap 10.4 (ESRI, Redlands,
CA). For each plot size, 500 circular plots and 3500 circular plots in
total for five selected neighborhoods were analyzed. For patch level, all
individual vegetation patches in the five selected neighborhoods were
first included, then patches smaller than one pixel (approximately 1m2)
were excluded from further analysis leaving 53,673 tree patches and
32,030 grass patches remaining for further analysis.
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For intra-patch evaluation, buffer rings extending from the sur-
roundings into the center of a vegetated patch were constructed to di-
rectly evaluate the edge effect of vegetation patches on microclimate
distributions. To ensure high quality patches we first filtered patches
with patch size larger than 500m2, regular shape, and homogeneous in
vegetation coverage throughout. The size filter was applied to ensure
the selected vegetation patches were large enough to allow generation
of sufficient rings for each patch. A shape filter was used to obtain si-
milar number of rings within a patch. With these restrictions we iden-
tified eight tree patches and five grass patches. For these patches, we
created multiple buffer rings at interval of 3m (3 resampled pixels) at
both directions of the patch edges in ArcMap 10.4 (Fig. 2). We extended
the buffers to include five outer rings surrounding each vegetation
patch. Because of size differences, each patch has different number
(11–27) of buffer rings.

3.2. Configuration metrics

At the neighborhood and circular plot scales we quantified four
landscape metrics separately for tree and grass within the different
analytical units. The selected four landscape metrics included one
composition metric, Proportion of Vegetation Cover (VC), and three
configuration metrics, Edge Density (ED), Shape Index (SI), and Patch
density (PD), to represent edge, shape, and spatial pattern of vegetation

landscape (Table 1). The four metrics have been used to evaluate
landscape configuration in previous analyses of urban LST (Chen et al.,
2014; Fan et al., 2015; Kong et al., 2014; Li et al., 2013; Myint et al.,
2015; Zhou et al., 2011).

Landscape metrics were calculated in Fragstats 4.3 (https://www.
umass.edu/landeco/research/fragstats/fragstats.html). First, the vege-
tation cover map was extracted by neighborhood and circular plot
boundaries from 1m spatial resolution NAIP-derived vegetation map in
ENVI/IDL 5.3. Raster data were converted to a thematic image and
were batch processed in Fragstats 4.3. Finally, landscape metrics were
calculated at neighborhood and circular plot scales and exported for
further statistical analysis. These statistics were designed to exemplify
the mechanism of vegetation configuration impacting LST. The the-
matic vegetation cover map was used to calculate each of these metrics
at the patch level in Fragstats 4.3.

3.3. Statistical analysis

Pearson correlation and regression analyses were used to examine
the relationships between vegetation and LST indices. In the correlation
analysis, trees and grass were separated from vegetation. Four vegeta-
tion indices (cover and three configuration metrics in Table 1) and
three LST indices (Mean, Max, and Min) were input as variables for
each vegetation types. For regression analyses, we compared linear and

Fig. 2. The conceptual diagram of analysis. The gray is impervious surface, yellow is bare soil, and dark green is vegetation (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article).

Table 1
The summary of selected vegetation metrics/indices.

Metrics Description Unit, Range

Tree Cover (VC_Tree) Proportion of landscape occupied by Tree %; 0–100
Grass Cover (VC_Grass) Proportion of landscape occupied by Grass %; 0–100
Edge Density (ED) Total perimeter of patches divided by total area of landscape /ha; ≥0
Patch Density (PD) Total number of patches divided by total area of landscape /ha; > 0
Shape Index (SI) Total patch perimeter divided by the square root of patch area, adjusted by a constant to adjust for a circular standard (Vector) Non; > 1
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non-linear models, including logarithmic, exponential, and quadratic.
Nonlinear models were evaluated as vegetation effects on micro-
climates are often saturating (e.g. Yokohari et al., 2001). We also per-
formed multiple regression analysis to evaluate how different vegeta-
tion factors influence urban heat in an integrated analysis. We selected
all eight vegetation indices (four each for grass and tree cover) as in-
dependent variables and three LST indices as dependents, then we se-
lected the stepwise method to filter the three most determinative
variables to cooling effects in R version 3.4 (https://www.r-project.
org). When choosing the best fitting model for relationships, models
were evaluated and identified using the Akaike information criterion
(AIC) (Akaike, 1974) where the smallest AIC value was chosen as the
best statistical model. AIC was calculated as:

= + +n π RSS n pAIC [ln(2 * / ) 1] 2 (1)

where RSS is the residual sum of squares between each model predic-
tion and the observation, n is the number of observations and p is the
total number of parameters in the model. In all cases, analyses were
primarily directed to testing hypothesized controls of configuration to
LST rather than generate predictive models.

4. Results

4.1. Vegetation cover reduces LST at all scales

Correlations between vegetation, both tree and grass cover, and LST
indices were consistent and sensitive to all scales examined (Figs. 3 and
4; Supplemental Table 1). In addition, the magnitudes of tree cover
(r=−0.27 to −0.68, mean=−0.43, p < 0.05) in cooling urban
heat is greater than that of grass cover (r=−0.25 to −0.54,
mean=−0.33, p < 0.05) (Supplemental Table 1), although sub-
stantial overlap in cooling capacity was observed and individual models
had large uncertainties. Mean, Max, and Min LST were all negatively
related to vegetation cover (except Max LST for tree cover at neigh-
borhood level) (Fig. 3), and Mean LST showed the highest correlation
for both vegetation types (Supplemental Table 1). Moreover, at the
circular plot scale the greenspace had generally higher correlative
coefficients (r=−0.25 to −0.68, mean=−0.42, p < 0.05) than at
neighborhood scales (r=−0.27 to−0.57, mean=−0.37, p < 0.05),

especially for mean temperature (mean=−0.61 vs −0.48) (Supple-
mental Table 1).

4.1.1. Cooling effects of tree cover at all scales
At the circular plot scale, tree cover was more correlated to LST

indices than at the neighborhood scale (Fig. 3, Supplemental Fig. 1). For
all different sizes of circular plots, tree cover was negatively related to
Mean, Max and Min LST (p < 0.05), while the magnitudes differed
among the three LST indices (Supplemental Table 1). Compared to
other LST indices, Mean LST had stronger magnitudes of relationships
with tree cover ranging from −0.55 to −0.62 (p < 0.05) across plot
sizes. Correlations of Max LST and tree cover were consistently negative
across circular plots (-0.35- -0.39, p < 0.05), while correlations be-
tween Min LST and tree cover decreased from -0.39 to -0.21
(p < 0.05). Although the correlations were generally negative across
scales, the best fitting models differed among scales and LST indices
(Fig. 3). Correlations between tree cover and LST were best predicted
by linear models at the neighborhood scale. At the circular plot scale
the relationships between tree cover and either Mean or Max LST were
best represented as a linear function while a logarithmic function was
the best model for the relationship between Min LST and tree cover.

4.1.2. Cooling effects of grass cover at all scales
Grass cover was negatively related with LST indices (p < 0.05).

While the effect of grass cover was less than tree cover, the trends and
scale-effects were similar to that of tree covers (Figs. 3 and 4). For in-
stance, grass cover had stronger correlations with LST indices at plot
scale than neighborhood scale for Mean LST (Supplemental Table 1)
and the Min LST was best predicted by logarithmic function of grass
cover at circular plot scale (p < 0.05). At the same time, correlations
between grass cover and Max LST were observed at neighborhood scale
while the correlations were insignificant for tree cover. Concerning the
cooling effect magnitude at different plot sizes, similar to tree cover,
Mean LST remained stable (−0.51 to −0.54, p < 0.05). However, the
magnitudes of correlations decreased from−0.45 to−0.14 (p < 0.05)
for Max LST; and −0.27 to −0.19 (p < 0.05) for Min LST, with the
increase of plot size (Supplemental Table 1).

Fig. 3. The relationships between tree cover and LST for neighborhood and circular plot scales. Lines indicate the correlation is significant at level of 0.05.
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4.2. Vegetation configuration affecting LST at all scales

Correlations between configuration metrics and LST indices de-
pended on and dramatically varied among green types, configuration
metrics, LST indices, and scales (Supplemental Fig. 1 and 2;
Supplemental Table 2). Similar to vegetation cover, configuration of
trees had stronger correlations with LST than grass at all scales and LST
indices (p < 0.05). Mean LST for both tree and grass cover was the
most strongly correlated LST index with configuration metrics. In
contrast, while vegetation cover had stronger correlations at the plot
scale, most configuration metrics had stronger correlations at the
neighborhood scale (Supplemental Table 2). The magnitudes of vege-
tation configuration correlations varied in magnitude and direction
depending on landscape metrics and LST indices, and the correlations
alternately increased, decreased, or remained nearly constant corre-
sponding to changing scales (Fig. 5; Supplemental Table 2). The var-
iations of patch density and LST relations suggested the sensitivity of
patch sizes for temperatures.

4.2.1. Landscape configuration of tree cover affects LST
All configuration metrics were negatively correlated to LST indices

(r=−0.11 to −0.6, p < 0.05) except Max LST and patch density
(r=−0.05) or shape index (r=−0.1) at plot scale. Correlations be-
tween configuration metrics and LST indices were stronger at the
neighborhood scale than plot scale except Max LST of edge density
(Supplemental Fig. 1; Supplemental Table 2). For different plot scales,
all LST indices were negatively correlated with edge density and shape
index (r=−0.04 to −0.6, p < 0.05 except shape index at smaller
plots). With increasing circular plot sizes, the magnitude of correlations
between configuration and LST increased. For shape index, all three
LST indices had a peaked sensitivity to configuration at 250m
(p < 0.05), while edge density had the strongest correlations at 150m
for Mean LST and at 200m for Max and Min LST (p < 0.05) (Fig. 5;
Supplemental Table 2). The sensitivity to scale of correlations between
shape index and LST were more unpredictable, especially at smaller
scales (< 90m), than that of edge density. Mean LST had stronger
correlations with edge density while Min LST had stronger correlation
with shape index. All LST indices were significantly correlated with
edge density at all circular plots, but for shape index only Min LST was
significant at all circular plot scales. In contrast, correlations between

LST indices and patch density were more variable and exhibited not
only a change in magnitude but also direction. At finer scales, smaller
than 150m, both Mean and Max LST were positively correlated with
patch density but at larger scales the correlation switched to negative
and significant. Min LST was negatively correlated with patch density
but the correlations were insignificant at the smaller scales, consistent
with Mean and Max LST where significant correlations emerged when
the plot scale exceeded 150m. (Supplemental Figs. 1 and 2; Supple-
mental Table 2).

4.2.2. Landscape configuration of grass cover and LST
Compared to trees, grass configuration metrics had weaker corre-

lations (r=−0.22 to −0.43, p < 0.05) with LST indices
(Supplemental Fig. 1 and 2; Supplemental Table 2). However, differing
from the other metrics of grass and all metrics of trees, edge density of
grass had better correlation at plot scale (r=−0.43, p < 0.05) than
that of tree cover (r=−0.33, p < 0.05), and the trends reacting to
increased plot size differed in directions: Mean LST remained stable,
Max LST increased, and Min LST decreased (Fig. 5; Supplemental
Table 2). The scale-dependent variation in patch density and shape
index for grass are more unpredictable and dependent on scales, metrics
and LST indices. Except the insignificant relationship with Min LST,
Mean and Max LST indices were related to the patch density of grass,
similar to trees, had negative (r=−0.21 to −0.33, p < 0.05) and
increased correlations with the increasing plot sizes, while Min LST
exhibited a negative to positive transition (Supplemental Table 2),
which differed to that of tree cover. Correlations of shape index of grass
and LST were only significant for Min LST. Circular plots scales between
150–200m were the threshold that the correlation became significant
for all LSTs compared to trees, which occurred at about 90–150m.

4.3. Vegetation determinants of LST

Vegetation cover is the most prominent factor to reduce urban heat,
decreasing LST by 0.11–0.27 °C with increase 1% of vegetation for
Mean LST (p < 0.05) (Table 2). Considering the vegetation types, tree
cover (−0.13 to -0.14 to −0.27, p < 0.05) was more influential than
grass cover (−0.11 to -0.22, p < 0.05) in cooling for all LST indices.
The selected three configuration indices all contributed to cooler LST,
however, the contribution of vegetation configuration depended on LST

Fig. 4. The relationships between grass cover and LST for neighborhood and circular plot scales. Lines indicates the correlation is significant at level of 0.05.
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indices and metrics (Supplemental Tables 3 and 4). Across scales, the
proportional contribution of tree configuration was 45% that of tree
cover (standardized coefficients). Vegetation cover, both tree cover and
grass cover, and edge density (and shape index) were predictors of
Mean LST, while tree cover and patch density and shape metrics were
predictors of Max and Min LST. For the circular plots, vegetation covers
were always the most important factors in cooling Mean LST at all plot
sizes, although the importance of configuration metrics depended on
plot sizes (Table 2). Four of seven plot sizes included edge density, and
two included shape index. For Max and Min LST, the magnitudes of
vegetation cover of cooling effects decreased, but were still the most

important factors, and still configuration remained in the best fit model
(Supplemental Tables 3 and 4).

4.4. LST distributions within individual vegetation patches

LST variation within an individual patch, extending from the sur-
roundings and into the patch center, differed between trees and grass.
The average LST of all tree patches were reduced proceeding from the
surroundings to the interior of transects from 53.04 to 37.92 °C
(r=−0.99, p < 0.05) for Max LST, and from 43.26 to 32.2 °C
(r=−0.89, p < 0.05) for Mean LST, and from 33.25 to 32.24 °C

Fig. 5. Correlations between configuration metrics and LST for circular plot scales and entire neighborhood scale for three LST indices. Neigh. is the whole neigh-
borhood scale.

Table 2
Multiple regression analysis between configuration of vegetation metrics and Mean LST.

Scale Variable UC SC 95% CI Scale Variable UC SC 95% CI

25 VC_Grass −0.13** −0.52 −0.14 −0.11 40 VC_Tree −0.16** −0.51 −0.17 −0.15
VC_Tree −0.15** −0.37 −0.18 −0.12 VC_Grass −0.14** −0.33 −0.17 −0.11
SI_Tree −0.43** −0.15 −0.46 −0.41 ED_Grass −0.07** −0.17 −0.09 −0.05
Constant 55.6 54.52 56.67 Constant 54.94 54.35 55.52
Adjusted R2 0.51** Adjusted R2 0.56**

60 VC_Grass −0.14** −0.56 −0.16 −0.12 90 VC_Tree −0.18** −0.39 −0.24 −0.13
VC_Tree −0.14** −0.38 −0.15 −0.12 VC_Grass −0.13** −0.28 −0.21 −0.05
ED_Tree −0.03** −0.14 −0.05 0.01 PD_Tree −0.04** −0.13 −0.07 −0.01
Constant 55.17 54.63 55.71 Constant 56.13 55.47 56.88
Adjusted R2 0.59** Adjusted R2 0.58**

150 VC_Tree −0.16** −0.51 −0.18 −0.13 200 VC_Tree −0.27** −0.5 −0.28 −0.24
VC_Grass −0.17** −0.35 −0.2 −0.15 VC_Grass −0.22** −0.35 −0.25 −0.19
ED_Tree −0.02** −0.15 −0.04 −0.01 SI_Tree −0.35** −0.13 −0.39 −0.32
Constant 56.99 56.25 57.73 Constant 57.77 56.86 58.68
Adjusted R2 0.57** Adjusted R2 0.61**

250 VC_Tree −0.19** −0.54 −0.23 −0.15 Neigh. VC_Tree −0.18** −0.52 −0.23 −0.14
ED_Tree −0.09** −0.4 −0.12 −0.07 VC_Grass −0.16** −0.23 −0.19 −0.13
VC_Grass −0.11** −0.13 −0.12 −0.1 ED_Tree −0.04** −0.21 −0.05 −0.03
Constant 56.77 56.05 57.49 Constant 51.29 50.51 52.56
Adjusted R2 0.58** Adjusted R2 0.55**

UC-Unstandardized Coefficient; SC-Standardized Coefficient; CI-Confidence Interval; Neigh. stands for neighborhood.
**P≤ 0.01 (Two-tailed).
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(r=−0.61, p < 0.05) for Min LST. The patches with longer distance
from edge were cooler in the internal areas. Removing transects outside
the patch, Mean (r=−0.88, p < 0.05) and Max LST (r=−0.94,
p < 0.05) were still significantly related to the distance from patch
edge (Fig. 6a,b). All transects followed an exponential relationship with
differences among transects both for the exponential decay parameter
and constant. For example, Mean LST of tree patches rapidly decreased
within the first 20–30m from patch edge (Fig. 6a). For Max LST, most
patches exhibited rapid cooling at the first 30–40m, and then decreased
much slower, or even remained stable. For Min LST of tree patches, the
LST variations fluctuated and most weren’t significantly different be-
tween patch edge and interior of patch (0–75m), except one patch,
which showed an increase (r= 0.24, p < 0.05) (Fig. 6c).

For grass patches, Mean and Max LST were significantly (p < 0.05)
related to the distance from surroundings to patch center. The most
dramatic decreases occurred from outside the patch to the patch
boundary (−15 to 0m, p < 0.05) and the intra-patch LST variations
from patch edge to center weren’t significant for any LST indices for all
grass patches examined (Fig. 6d–f). For each LST index, one patch
showed different trends/variations from the other patches, blue dotted
lines for Mean and Max LST (Fig. 6d–f). Without considering the spe-
cific patches, all LST indices were relatively constant or slightly
changed across transects.

5. Discussion

High spatial resolution remotely sensed LST data sets provide un-
paralleled opportunities for quantifying vegetation-LST interactions at
scales from individual patches to neighborhoods and allow new op-
portunities to identify the effects of vegetation configuration on mi-
croclimate distributions. With these data we found both tree and grass
covers cooled LST with greater microclimate effects generated by tree
cover. Nonetheless, vegetation configuration also significantly influ-
enced LST from the neighborhood to individual patch scales. The effect
of configuration exceeded 40% the effect of tree cover and was
equivalent at many scales to grass cover. Given a certain amount of
green cover, increasing vegetation edges and shape complexities were
associated with cooler landscapes and would lead to warmer individual
vegetation patches. The effects of configuration on LST were more

influential at neighborhood scales than at plot scales. These findings
were further corroborated by analyses of individual patch distributions
and transects from outside to the center of vegetation patches. Together
the results across neighborhoods, within neighborhoods, individual
vegetation patches, and within patches support the hypothesis that ef-
fects of vegetation configuration on urban LST are associated with a
combination of microclimate cooling within vegetation patches and
energy exchanges between vegetation patches and surrounding en-
vironments. More edge length and complex boundaries strengthen en-
ergy exchanges between vegetation patches and surrounding environ-
ments while vegetation patches with more core area reduce energy
exchanges with surrounding environments. With improved under-
standing of the biophysical underpinnings of how landscape config-
uration influences LST, improved urban designs can be achieved that
look to maximize benefits for the same extent of vegetation coverage.
Neighborhoods with a few larger and many smaller vegetation patches
will likely provide benefits for whole landscape cooling while also
providing locations of cool refugia accessible to residents.

5.1. Vegetation cover affects urban LST at multiple scales

Our multi-scale analysis with high resolution thermal data provide
key support for previous work conducted at much larger resolution
(Zhou et al., 2011; Li et al., 2013; Ren et al., 2015; Li et al., 2016) that
vegetation cover is more prominent than configuration for urban
cooling (Shashua-Bar and Hoffman, 2000). Trees can cool the en-
vironment, by providing shade and strengthening evapotranspiration
rate and lower emissivity than built-up structures (Weng et al., 2004),
as has been repeatedly shown (Sun and Chen, 2017; Zhang et al., 2017).
For grass cover, shade is not a cooling factor; however, transpiration
rates can contribute to surface cooling and depend on management and
environmental conditions (Litvak and Pataki, 2016). Likely because of
management and environmental differences, some previous studies
suggested that grass can mitigate urban heat (Takebayashi and
Moriyama, 2009; Skelhorn et al., 2014; Fan et al., 2015) and may in
some cases even exceed cooling from trees (Wetherley et al. 2018),
while some suggested the opposite (Heinl et al., 2015; Connors et al.,
2013; Yang et al., 2017). In our analysis, cooling effects from grass
cover were observed although these effects were limited compared to

Fig. 6. Variations of LST within vegetation patches across transects from surroundings to patch edge to patch center. Dots with different color indicate different
patches. Lines indicate significant correlation (p < 0.05).
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trees (Figs. 3 and 4; Supplemental Table 1). However, grass cooling is
still meaningful since grass and lawns comprise 70–75% of urban
greenspace worldwide but the cooling effects are infrequently eval-
uated (Ignatieva et al., 2015; Wetherly et al. 2018). Uncertainties in the
effect of vegetation cover on LST result from differences in other me-
teorological parameters, including wind speed and humidity, and may
also be associated with effects of vegetation configuration.

5.2. Vegetation configuration affects urban LST at multi-scales

While vegetation cover was the most important factor for cooling
urban LST, vegetation configuration was also related to LST distribu-
tions. Configuration metrics, including edge density, patch density and
shape complexity were negatively correlated with LST, also consistent
with previous studies (Li et al., 2013; Zhou et al., 2011). In contrast, the
effects of patch density were more unpredictable. Although for smaller
circular plots of tree cover and larger plots of grass cover, patch density
had positive correlations with LST (Supplemental Table 2), which is
also consistent with some previous analyses showing more fragmented
landscapes led to cooler LST (Fan et al., 2015), while others suggested
the opposite (Zhao et al., 2010). Our multiple-scale analysis may help
resolve these inconsistencies as both directions of effects were observed
in our analysis; for tree cover higher patch density increased Mean and
Max LST indices at smaller scales while decreased these LST indices at
neighborhood and larger plots (Supplemental Table 2). The variability
of patch density influences on cooling indicted several configuration
factors are synergetic. In the case of patch density, patch size is also a
key variable; the same value of patch density may result from many
different arrangements.

5.3. LST variation within individual patch

The variation of LST for individual vegetation patches from sur-
roundings to patch center (Fig. 6) was consistent with predictions that
configuration effects for more irregular vegetation patches are warmer.
The LST variation within individual patches supported an energy ex-
change mechanism between patches as a key factor determining how
landscape configuration influences urban LST. Vegetation edges re-
duced the temperature in the area immediately adjacent to the vege-
tation patches while also warming the vegetation at the edge compared
to within the core. By increasing the patch size, the core area increases
faster than the edge area, and vice versa (Didham and Lawton, 1999),
explaining why larger patch sizes and more simple configurations
would reduce patch LST. When the patch size is small enough, the
entire patch becomes edge area (Wu and Vankat, 1991) where the
patch-cooling was more limited although further distributed across the
landscape. Conversely, since the temperature remained stable beyond a
certain distance, increasing patch size beyond this threshold reduces
vegetation LST because the core area is less affected by surroundings
and more of core area remains cooler. This finding is consistent with
nonlinear effects of greenspace cooling into residential areas previously
observed (Yokohari et al., 2001). In addition, our LST variation analysis
within tree patches suggested the critical patch size is achieved between
20–30m from patch edge for Mean LST (Fig. 6a), and 30–40 m for Max
LST (Fig. 6b). Therefore, a radius of 20–30m at least for a tree patch is
needed to cool surroundings and landscape when we assumed the patch
is a regular circle shape, then the patch size is about 0.1–0.3 ha, for
trees to result in enough core area to minimize the effects of adjacent
patches. The critical patch size should be larger when the patch is
shaped more irregularly. In the contrast, the landscape LST switched to
an increase trend when patch size smaller than a critical size, as shown
by the positive relationship between LST and patch density at fine plot
scales (Supplemental Table 2). Therefore, the distribution patch size
should be considered when increasing fragmentation of greenspace to
increase edge- and shape-related features for landscape cooling.

5.4. Scale-dependence of vegetation configuration and LST relationships

An overarching finding of our work is the prominent influence of
scale on urban LST distributions. At the endpoints of circular plot and
whole neighborhood LST responded distinctly but systematically to
vegetation: the influence of vegetation cover decreased, but influence of
configuration increased with the increase of scale. These results con-
trast with previous studies relying on moderate resolution LST data
(Saura, 2004; Saura and Martinez-Millan, 2001; Song et al., 2014; Wu,
2004; Zhou et al., 2017), which suggested vegetation density and
configuration metrics were consistently responding to scales. We
showed the correlation distinctly differed between vegetation cover,
different configuration metrics, and LST indices across scales (Supple-
mental Table 2). Patch density was notable in scale dependence with
LST where the correlation of patch density and Mean and Max LST
changed from positive at smaller plots to negative at larger plots for tree
covers. At the broader neighborhood scale, fragmented landscapes can
increase vegetation edge length, cooling down surroundings and lead to
a cooler landscape. However, when the plot decreased to less than
150m (Supplemental Table 2), limited edge area of small patches ex-
isted for energy exchange to completely cool down surroundings, in
these configurations both the landscape and vegetation LST can in-
crease. The sensitivity of correlations, both in magnitude and direction,
to changing scales demonstrates the importance of scale for evaluating
vegetation cooling effects. Recognizing that changing scale leads to
altered vegetation-LST correlations is important for evaluating the in-
fluence of landscape pattern on thermal environments (Zhang et al.,
2013).

5.5. Implications and outlook in building climate resilient cities

With the wide spread findings of cooling benefits from urban trees,
many cities are increasing urban vegetation density (Akbari and
Konopacki, 2005; Rosenfeld et al., 1995; Taleghani et al., 2016). In
looking to maximize the effectiveness of green infrastructure for urban
cooling, the configuration of urban vegetation can substantially affect
both landscape and local LST and the effectiveness of tree cover (Li
et al., 2017; Zhou et al., 2011). In planning for vegetation arrangement,
patch size and edge length can be key configuration variables influen-
cing green infrastructure cooling capacity. Designing a landscape with
many small tree patches can provide more landscape LST cooling than a
single large one with the same total area of tree cover (Jiao et al.,
2017). Increasing vegetation core area may also provide cooler refugia
during high temperature periods. Taken together, arranging fewer large
vegetation patches accessible to buildings or residents and many
smaller vegetation patches will may help create more heat resilient
cities. Linking the distributions of LST to other metrics of climate, in-
cluding air temperature (Shiflett et al. 2017; Crum and Jenerette 2017),
remains an important research challenge.
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