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A B S T R A C T

Mapping urban vegetation is a prerequisite to accurately understanding landscape patterns and ecological ser-
vices provided by urban vegetation. However, the uncertainties in fine-scale vegetation biodiversity mapping
still exist in capturing vegetation functional types efficiently at fine scale. To facilitate the application of fine-
scale vegetation spatial configuration used for urban landscape planning and ecosystem service valuation, we
present an approach integrating object-based classification with vegetation phenology for fine-scale vegetation
functional type mapping in compact city of Beijing, China. The phenological information derived from two
WorldView-2 imagery scenes, acquired on 14 September 2012 and 26 November 2012, was used to aid in the
classification of tree functional types and grass. Then we further compared the approach to that of using only one
WorldView imagery. We found WorldView-2 imagery can be successfully applied to map functional types of
urban vegetation with its high spatial resolution and relatively high spectral resolution. The application of the
vegetation phenology into classification greatly improved the overall accuracy of classification from 82.3% to
91.1%. In particular, the accuracies of vegetation types was improved by from 10% to 13.26%. The approach
integrating vegetation phenology with high-resolution remote sensed images provides an efficient tool to in-
corporate multi-temporal data into fine-scale urban classification.

1. Introduction

Urban ecosystems have been threatened by a deteriorating ecolo-
gical environment (Bastian et al., 2012) caused by urbanization, par-
ticularly in developing countries (Cohen, 2006; Eckert and Kohler,
2014). Meanwhile, urban green infrastructure (GI), particularly trees,
can provide numerous ecosystem services (Pickett et al., 2011; Zhou
et al., 2017a; Clark et al., 2013; Wu et al., 2013), such as ameliorating
air and water pollution (Yan et al., 2016a; Orellana et al., 2012;
Jenerette et al., 2011, 2016; Lin et al., 2017); alleviating urban heat
islands (Li et al., 2014, 2017; Adams and Smith, 2014; Zhou et al.,
2011, 2017b); reducing soil contamination (Boshoff et al., 2014;
Curran-Cournane et al., 2015). In addition, these services are highly
affected by GI composition and landscape pattern (Li et al., 2013a,b).
Therefore, accurately detailed GI mapping is critical to evaluate eco-
system services and to identify vegetation functioning in urban areas
(Qian et al., 2015; Zhou and Qiu, 2015).

Remote sensing techniques and products have been widely used for
urban vegetation mapping, which is a much more efficient than tradi-
tional field investigation (Xie et al., 2008). Some studies began to use

low/medium spatial resolution remote sensed products for vegetation
cover mapping (Mucina, 1997; Belward et al., 1990; Running et al.,
1995) in last century. However, urban GI is highly heterogeneous and
characterized by a large number of small-sized patches, which cannot
be detected by low/medium resolution image data (Qian et al., 2015).
With the increasing availability of high resolution remote sensed ima-
gery, much more studies have been using high-resolution remote sensed
products to achieve higher accuracy for urban greenspace mapping
(Mathieu et al., 2007a; Pu et al., 2011; Walker and Blaschke, 2008;
Zhou and Troy, 2008).

Recently, increasing attention has been focused on identifying
urban vegetation functional types (Mathieu et al., 2007b; Myint et al.,
2011; Rapinel et al., 2014; Zhang et al., 2010). These classification
accuracy, however, were still relatively low compared to that of urban
land cover. Mathieu et al. (2007a) combined IKONOS images and ob-
ject-based classification to identify large-scale vegetation communities
in urban areas of Dunedin city, New Zealand, and the overall accuracy
ranged from 63.6% to 77.1%. Even lower accuracies were reported
from few studies that attempted to separate tree genera/species with
sub-meter resolution (≤1m) remote sensed products. For instance,
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Immitzer et al. (2012) found the benefits of additional four spectral
information were highly species-dependent when separating European
tree species in Austria using a summertime WorldView-2 image. The
accuracies ranged from 57% (European hornbeam) to 92% (Lawson’s
cypress). Pu and Landry (2012) compared the capacity of IKONOS and
WorldView-2 for identifying tree species in Tampa, Florida, USA, and
found an overall accuracy of WorldView-2 imagery ranging from
65.61% to 67.22% when considering 6-species/group. Up to now,
classifying vegetation types or tree species is still a challenge according
to existing studies owing to the fragmented GI mosaics and hetero-
geneous urban environments, as well as shadowed and obscured urban
objects (Tigges et al., 2013). In addition, the accuracies of classification
were highly depend on the study location, imagery properties, classi-
fication approach, and the treatment of shadow (Chasmer et al., 2014;
Pu and Landry, 2012; Zhou et al., 2009; Immitzer et al., 2012).
Meanwhile, LiDAR data has been applied to some studies as single data
source, or integrated with remote sensing images, to utilize its spatial
resolution and 3D structure. These studies generally produce higher
accuracies than those only deployed remote sensing imagery (Parent
et al., 2015; Zhou and Troy, 2008; Li et al., 2013a,b). However, re-
gardless of the spatial misregistration and radiometric differences
among different sources of data (Li et al., 2015; Parent et al., 2015;
Tooke et al., 2009), the unavailability of LiDAR data in certain places
limits its widely applications. Therefore, we need a more accessible and
also efficient approach that only using remote sensed products to ac-
curately identify urban vegetation functional types and even tree spe-
cies in compact cities.

Many previous studies (Aguilar et al., 2013; Hill et al., 2010; Senf
et al., 2015; Tigges et al., 2013) suggested that deploying vegetation
phenology derived from multi-temporal imagery are helpful to distin-
guishing the different land covers with a similar phenology trend
(Bradley and Mustard, 2008). Vegetation phenology reflects the re-
sponse of the vegetation to inter- and intra-annual dynamics of the
Earth’s climate and hydrologic regimes (Myneni et al., 1997; Schwartz
and Reed, 1999; White et al., 1997; Richardson et al., 2013; Wu et al.,
2013). In most terrestrial ecosystems, forestry canopy processes related
to leaf development and senescence are strongly controlled by climate
and hydrological conditions (Chuine et al., 2010; Melaas et al., 2013).
Phenological dynamics are usually collected using two approaches:
surface observation networks (Schwarz et al., 2012), and satellite re-
mote sensing (Reed et al., 2009). Surface observations provide detailed
information related to the timing of leaf development and flowering
phenology for individual plants, but the use of such data is limited by
data availability, the spatial extent of available samples, and biases
inherent to used methods in characterizing vegetation phenology
(Cleland et al., 2007). Phenology from remote sensing is determined by
the seasonal dynamics of vegetation greenness using spectral signals
from satellite sensor platforms (Melaas et al., 2013; Wu et al., 2013). A
series of vegetation index (VI) have been extensively used in re-
constructing phenological transitions for various vegetation functional
types (Hmimina et al., 2013; Wu et al., 2013).

However, the widely used remote sensed phenological data source is
the Moderate Resolution Imaging Spectroradiometer (MODIS) and
AVIRIS (Aguilar et al., 2013; Ganguly et al., 2010; Gonsamo et al.,
2012; Hill et al., 2010; Hmimina et al., 2013; Li et al., 2015; Sakamoto
et al., 2010; Wolter et al., 1995; Yan et al., 2015a,b; Zhang et al., 2003).
Elvidge and Portigal (1990) found dramatic seasonal spectral changes
in annual grasslands and smaller spectral changes in evergreen vege-
tation in a three-date time series of Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) data. Merton (1998) demonstrated seasonal
changes in the shape of the red edge in a five-image AVIRIS time series
of Jasper Ridge. Wolter et al. (1995) used five Landsat TM and MSS
images acquired in different months from 1980 to 1992 to classify
forest types in northern Wisconsin, US. Senf et al. (2015) compared the
capacity of multi-seasonal Landsat TM data and synthetic imagery
combined with Landsat and MODIS of classifying four vegetation types.

The results from synthetic images increased about 30% at overall ac-
curacy compared to results only used multi-seasonal images. Therefore,
the identification of urban vegetation types that deploying high-re-
solution multiple temporal images may produce a higher accuracy,
because the high-resolution images have huge advantages of represent
urban heterogeneity via more detailed geography and abundant spec-
trum. However, the studies with high-resolution remote sensed images,
especially with sub-meter resolution data are rare (Key et al., 2001;
Tigges et al., 2013).

In order to test the capacity of vegetation phenology in fine-scale
urban vegetation types mapping, this study deployed sub-meter spatial
resolution WorldView-2 imagery acquired from multiple seasons to
land cover classification in Beijing urban areas. In this study, we
identified vegetation functional types through two different classifica-
tion schemes based on object-based approach using summer-time
imagery and two imagery acquired from summer and early winter. We
aimed: to assess the capacity of summer-time WorldView-2 imagery for
vegetation type mapping using the object-based image analysis; and to
examine the improved capacity of vegetation phenology in vegetation
type mapping in highly urbanized Beijing city. The study would provide
more proofs that vegetation phenology is quite useful in improving
urban vegetation identification.

2. Study area and data

2.1. Study area

Beijing is characterized by its rapid urbanization and heterogeneous
urban landscape. The percentage cover of vegetation in Beijing city was
47.4% in 2014, with 15.9 square meters of public vegetation per
person, however, the vegetation cover is only approximately 33% in
urban areas (Beijing Municipal Bureau of Landscape and Forestry,
2014). Beijing belongs to temperate semi-humid continental climate,
which facilitates a high diversity of urban vegetation with both species
and structure. Meanwhile, the physiological characteristics of vegeta-
tion ecosystem are significantly changed among four distinctive sea-
sons. In growing season ranging from late spring to early autumn, the
leaves of deciduous and grass are green because the chlorophyll absorb
red and blue lights but reflects the green light. When the temperature
getting lower in late autumn to early spring, which restricts the for-
mation of chlorophyll, the amount of chlorophyll in leaves reduces but
the carotenoid increased. Then the leaves changing to yellow because
the carotenoid reflects yellow light and absorb blue and green light. The
spectral features derived from remote sensed images change with the
changing of plant physiological, but the changes are distinctive among
different vegetation functional types. The deciduous trees and grass are
significant changed between growing season and non-growing seasons,
but the evergreen trees are essentially unchanged. Therefore, the phe-
nological dynamics that represent the changes in spectral observations
are useful to classify urban vegetation types.

The study area is a subset of an area of 24 square kilometers
(6×4 km2) in the northwest of Beijing, China (Fig. 1), where char-
acterized by heterogeneous and fragmented landscape mosaics. The
southern section of the subset is composed of dense urban areas, with
scattered small vegetation mosaics. In contrast, the northern section is
located in the transition region from downtown to suburban, where
parks and universities are the predominant land use types. In this area,
different types of vegetation are intertwined and fragmented.

2.2. Data preprocessing

The WorldView-2 satellite, launched in 2009 by DigitalGlobe Inc., is
the first very high spatial resolution commercial satellite that provides
8 spectral bands. It has a panchromatic band with a spatial resolution of
46 centimeters, and eight multi-spectral bands cover the spectrum from
400 to 1040 nm at the spatial resolution of 1.84m (Table 1). Each of the
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spectral bands focuses on a particular range of the electromagnetic
spectrum that is sensitive to particular features on the ground, or the
properties of the atmosphere.

Two scenes of WorldView-2 imagery acquired on September 14,
2012 (IMS) and November 26, 2012 (IMN) respectively were deployed
in this classification. They were orthographic calibration-ready stan-
dard products obtained under cloudless conditions, and a series of pre-
processing steps, including internal sensor geometry correction, re-
moval of optical distortions, scan distortions and line-rate variations,
and band registration, were performed by the vendor. Then Gramm-
Schmidt (GS) algorithm (Padwick et al., 2010) in ENVI 4.8 (http://
www.harrisgeospatial.com/SoftwareTechnology/ENVI.aspx) was ap-
plied to multi-band pan-sharpening because the GS method can produce
better spectral quality and maintain the original spectral information of
imagery (Yuhendra et al., 2012). Then geometric corrections were
conducted in ERDAS IMAGINE™ 2010 (https://www.
hexagongeospatial.com/products/power-portfolio/erdas-imagine) with
controlling the RMS under 0.5. The geocorrection used Google Maps to
the same extent as a reference map for two imagery. The referenced
Google map was downloaded using Google maps capture software at a
spatial resolution of 0.5m.

3. Vegetation classification

Our study was directed toward two classifications schemes. First we
conducted the classification by only using the imagery acquired in
September (IMS) (referred to as Method 1). We then examined the
classification using multi-seasonal imagery collected from both in

September and November (referred to as Method 2). In Method 2,
imagery acquired in November (IMN) was introduced to identify cer-
tain vegetation types based on the vegetation phenology. For both
methods, the classifications were conducted using object-based proce-
dures (Benz et al., 2004; Blaschke, 2010; Hay et al., 2012) which were
implemented in eCognition Developer™ 8.7.

Five classes were included in both classifications-Deciduous Trees
(DT), Evergreen Trees (ET), Grass Land (GL), Impervious Surface (IS)
and Water Surface (WS). For both classifications, we first applied a
multi-resolution segmentation (MRS) algorithm to generate hier-
archical image objects. We then separated WS objects from other ob-
jects, which were subsequently divided into shaded objects and non-
shaded objects. We temporary have shade area because vegetation
phenology also can contribute to distinguish vegetation types under
shadow. The following procedures for classifying shaded and non-
shaded objects were different between two methods, as showed in
Figs. 2 and 3.

3.1. Image segmentation

We applied the MRS algorithm embedded in eCognition Developer™
to generate the most appropriate image objects. MRS is a bottom-up
segmentation that consecutively merges pixels or existing image objects
into bigger objects based on a relative homogeneity criterion (Baatz and
Schäpe, 2000; Benz et al., 2004), which measures how homogeneous an
image object is within itself. Three key parameters (scale, shape,
compactness) can be modified to control homogeneity (Anders et al.,
2011). Larger scale parameters result in larger objects, vice versa. If the
scale is too larger, the object would mix other land cover types, while
too small scale leads to a fragmented landscape (Yan et al., 2016b). The
value of shape, which equals 1 minus that of color, determines the
weight placed on shape when generating objects. A relatively small
value is generally recommended for shape (eCognition Developer re-
ference book; Zhou et al., 2009; Pu and Landry, 2012), so that more
weight can be set on color/spectral information. The parameter com-
pactness determines the compactness or smoothness of the objects.
Therefore, we set the weights for shape/compactness to 0.2/0.5 in our
segmentation according to visual inspection (Baatz and Schäpe, 2000;
Benz et al., 2004; Pu and Landry, 2012).

We chose Estimation of Scale Parameter (ESP) (Dragut et al., 2010,
2014) to determine segmentation scale in our study because it is more

Fig. 1. The study area located between the 3th and 5th ring roads in Beijing, China. The true color combination of WorldView-2 image (26 November, 2012) are Red; Near-Infrared 2;
Green.

Table 1
The spectral and spatial information of WorldView-2 imagery.

Spectral band Wavelength Spatial resolution

Coastal blue 400–450 nm 1.84m
Blue 450–510 nm 1.84m
Green 510–580 nm 1.84m
Yellow 585–625 nm 1.84m
Red 630–690 nm 1.84m
Red-edge 705–745 nm 1.84m
NIR1 770–895 nm 1.84m
NIR2 860–1040 nm 1.84m
Pan 450–800 nm 0.46m
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efficient and subjective compared to visual inspection. The ESP auto-
matically segments the image with fixed increments of scale parameter,
and calculates Local Variance (LV) as the mean Standard Deviation (SD)
of the objects for each object level obtained through segmentation, and
also assesses the dynamics of LV using a measure called Rate of Change
(ROC). The peaks in the ROC-LV graph indicate the object levels at
which the image can be segmented in the most appropriate manner,
relative to data properties at the scene level (Dragut et al., 2010). Re-
sults from our ESP analysis indicated there were four optimal scale
parameters (30; 50; 75; 95) that may be used for subsequent procedures
(Fig. 4). The image segments produced from different scales (Fig. 5)
were used to identify corresponding classes, e.g., scale 30 is the best
scale for classifying vegetation, while 75 is more appropriate for grass.
Therefore, we generated four-level hierarchical object layers using four
optimal scale parameters (30, 50, 75, 95 as scale; 0.2/0.5 as shape/
compactness) with all eight bands were weighed equally.

3.2. Classification process

3.2.1. Method 1: the classification of only one WV-2 imagery
Method 1 was to test the capacity of classifying vegetation types in

urban areas with only one eight-band WV-2 image using the rule-set
based classification implemented in eCognition developer™ 8.7. WS
objects were first separated using the Normalized Difference Water
Index (NDWI) value after segmentation. The image objects with NDWI
greater than 0.08 were classified as WS. The remaining unclassified
objects were then separated into shaded objects and non-shaded objects
using the combinative value of Brightness (25) and Mean Red-edge
(170) in membership classification (Table 4). Subsequently, the vege-
tation in non-shaded objects was identified using the Normalized Dif-
ference Vegetation Index (NDVI) values. WV-2 imagery has two Near-
infrared bands, in order to fully take the advantage of them, we used
both NDVIs (NDVI1 > 0.365 and NDVI2 > 0.35) simultaneously to
improve the accuracy. In addition, the value of Mean blue band

Fig. 2. The classification route map of Method 1. The upper row in the frame is the class name, and the bottom row is the features used for classification.

Fig. 3. The classification route map of Method 2. The upper row in the frame is the class name, and the bottom row is the features used for classification.
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(> 405) was used to remove “colorful roofs” and plastic playgrounds,
since their spectral characteristics are similar to vegetation and may be
confused with vegetation.

We then divided the non-shaded vegetation into three vegetation
types (grasses lands; deciduous trees; evergreen trees) with the selected
features resulting from the Classification and Regression Tree (CART).
The CART is a non-parametric classification method using training/
learning samples to generate accurate and reliable predictive models
(Breiman et al., 1984; Laliberte et al., 2012). Three vegetation types
were identified by two CART operations: Non-shaded vegetation was
first separated into trees and grass in the first operation, deciduous trees
and evergreen trees were then separated in the second operation. Before

the CART operation, a total of 1500 training samples (one-third of all
collected field samples) were selected, 500 samples for each of decid-
uous trees, evergreen trees, and grassland. All the samples were ran-
domly selected from 5000 field samples recorded location and tree
species/vegetation type. Then all 1500 samples were delineated into
shapefile, and input into eCognition developer. In eCognition developer
8.7, we analyzed the similarity between vegetation types at specific
features using sample statistic module. Finally, we included 42 features
that may be potentially useful for class identification (Table 2) in term
of similarity of two vegetation types (similarity index < 0.5). The
performance of decision tree in CART mainly determined by two values:
Relative Cost (RC) and Rate Of Change (ROC). RC ranges from 0 to 1,

Fig. 4. The optimal scales of segmentation identified by ESP. Scale 30, 50, 75, and 95 were selected for image segmentation.

Fig. 5. The segmentation results generated from the four optimal scales suggested by ESP. All scales were used for corresponding classes.
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with 0 meaning a perfect model, and 1 meaning random guessing. And
ROC also ranges from 0 to 1, and higher ROC values suggesting better
performance. In addition, more nodes of a decision tree meaning more
complexity of rule-set, which increase the difficulty of classification.
Considering the performance of CART and the complexity of classifi-
cation rule-set, a decision tree has 7 terminal nodes with RC of 0.19 and
ROC of 0.938 in the first operation, while the tree has 5 terminal nodes
with RC of 0.082 and ROC of 0.962 was selected for the second op-
eration. Finally, the features and thresholds that resulted from decision
trees were used for establishing rule-sets to separate the three non-
shaded vegetation types (Table 3, Fig. 6).

For shaded areas, we separated shadow objects into tree shadow
(shadow caused by trees) and building shadow (shadow caused by
buildings), because the two types of shadows were too distinct in
spectral characteristics to use the same threshold in identifying shaded
land covers, e.g., building shadow are generally much darker and
bigger than tree shadow. Therefore, the shaded objects with Area
greater than 500 pixels (125m2) and Brightness lower than 18 were
classified into building shadows, and the rest of the shaded objects were
tree shadows. The more boundaries of an object shared with vegetation,
the higher possibility of the object belongs to vegetation. Then shaded
vegetation was extracted from the two shadow types with combinative
use of NDVI2 and Relative border to vegetation (RBV). The RBV was set

to 0.5 for two type of shadows, and NDVI2 was set to 0.35 in tree
shadow, 0.2 in building shadow. Having shaded vegetation in tree
shadow and building shadow, three vegetation types were separated
using the same features as in non-shaded vegetation, but the threshold
for each feature was different. The remaining unclassified and shaded
objects in the entire study area were classified into impervious surface.
All classification details were summarized in Table 4.

3.2.2. Method 2: the classification of multi-seasonal WV-2 imagery
Method 2 was developed to examine the advantages of vegetation

phenology derived from multi-temporal imagery acquired in September
and November for vegetation type classification. Considering the ve-
getation phenology would improve the accuracies of vegetation clas-
sification, we used the IMN as auxiliary data in Method 2 to produce
phenological dynamics. Under this approach, phenological differences
were applied to identify vegetation types in non-shaded vegetation, and
the whole processes in shaded areas. Therefore, the procedures before
those steps were exactly the same as in Method 1.

For non-shaded areas, we developed the Phenological Differences
(PD) to represent the NDVI difference of the two corresponding image
objects at IMS and IMN (PD=NDVI1_IMS-NDVI1_IMN). Then we used
PD to separate evergreen trees from deciduous trees following the facts
that most leaves of deciduous trees fall in late November which causes
the reduction of NDVI value. For non-shaded objects, the objects were
classified into evergreen trees if the PD < 0.16, and objects were
classified into deciduous trees if the PD > 0.23. If 0.16 < PD < 0.23,
those corresponding objects were classified into mixed type of ever-
green and deciduous trees, which was further separated into evergreen
trees and deciduous trees using the same features used in Method 1.

In shaded areas, PD was used to determine the more appropriate
image, on which to conduct the following procedures. If the
PD > 0.32, then the following classification procedures were con-
ducted on IMS; otherwise, the IMN was used for the following classi-
fications. Afterwards, tree shadow and building shadow were extracted
from shaded areas of two images with the same features used in Method
1. Subsequently, shaded vegetation was identified from two types of
shadows only using the values of NDVI2, because NDVI1 is insufficient
to detect shaded vegetation. The threshold of NDVI2 on IMS was
identical to that of Method 1; but the thresholds for IMN were set to
0.23 in tree shadow and 0.12 in building shadow. Finally, the shaded
vegetation was separated into three vegetation types used the same
features in Method 1, but different thresholds in Table 4.

3.3. Accuracy assessment

The accuracy assessments were conducted separately for the two
methods. For each classified map, we first created a total number of 300
checking points through a stratified random scheme in ERDAS
IMAGINE™ 2010, with 60 points for each of the five classes. The col-
lected field samples, except for 1500 training samples used in CART,
and google maps were used as the reference data. Some field visits were

Table 2
The summary of the 42 candidate features used in Classification and Regression Tree.

Feature name Description

Band 1–8 Means intensity of an image object of bands
Brightness Mean value of eight bands
SD 1–8 Standard deviations of bands
NDVI 1 (band 7-ban5)/(band 7+ band 5)
NDVI 2 (band 8-ban5)/(band 8+ band 5)
Hue Means of Hue, one of three color components
Saturation Means of saturation, one of three color components
Intensity Means of intensity, one of three color components
Ratio band 2/3 The ratio of band 2 and band3
Ratio band 6/7 The ratio of band 6 and band7
Ratio band 6/8 The ratio of band 6 and band8
Ratio band 7/8 The ratio of band 7 and band8
Elliptic fit How well an image object fits into an ellipse
Rectangular fit How well an image object fits into a rectangle
Area The number of pixels
Compactness Similar to Border Index, but is based on area
Shape index The smoothness of an image object border
Border index How jagged an image object is
Length/width The ratio of length and width
Length The length of an image object
Width The width of an image object
Density The distribution in space of the pixels of image object
Asymmetry Describes the relative length of an image object
GLCMH GLCM homogeneity from band 7 and band 8
GLCMC GLCM contrast from band 7 and band 8
GLCMD GLCM dissimilarity from band 7 and band 8
GLCME GLCM entropy from band 7 and band 8
GLCMA GLCM angular 2nd moment from band 7 and band 8

Table 3
The summary of the eight most important features resulting from two Classification and Regression Tree operations.

First Operation Second Operation

Order Feature Importance Feature Importance

1 Ratio band 2/3 100 Hue-RedEdge_NIR1_NIR2 100
2 Hue-Red_Green_Blue 97.33 Ratio band 6/8 97.58
3 Mean Green 85.46 Ratio band 6/7 79.96
4 Mean Yellow 76.61 NDVI2 59.01
5 Brightness 71.18 NDVI1 57.47
6 Mean Red-edge 70.2 Mean NIR2 15.61
7 GLCMH-NIR1 2.4 Mean NIR1 11.22
8 GLCMC-NIR1 2.21 Mean Red-edge 8.61
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also finished if necessary, e.g., the locations were not only excluded
from our field samples, but have uncertainties in identify them just
based on google maps. Then confusion matrixes were generated to
calculate the overall accuracy (OA), user’s accuracy (UA) and produ-
cer’s accuracy (PA), and Kappa coefficient (KC) for each method.
Finally, we compared the accuracy changes between two classification
schemes.

4. Results

With Method 1, the overall accuracy of classification was 82.3%,
and the Kappa coefficient was 0.811 (Fig. 7a, Table 5). The user’s ac-
curacy ranged from 73.33% of ET to 93.33% of the WS, while produ-
cer’s accuracy ranging from 67.69% of ET to 94.96% of WS (Table 5).
The ET and WS always had the lowest and highest accuracy in two
kinds of accuracies. The confusion matrix showed that misclassifica-
tions mainly occurred among vegetation types, as well as between ve-
getation types and IS. 10 of the 11 misclassified DTs were mostly
misclassified into ETs (8 of 11) or GLs (2 of 11). Similarly, 12 out of the
16 misclassified ETs were misclassified into DT (7 of 16) and GLLs (5 of
16). And 11 of 15 misclassified GLs were mistaken to tree types.

With Method 2, the overall accuracy and Kappa coefficient in-
creased to 91.1% and 0.881, respectively (Fig. 7b, Table 6). Similar to
Method 1, ET had the lowest accuracy, and WS had the highest accu-
racy. The overall accuracy had been improved, but the misclassifica-
tions among vegetation types still the major errors. Most of the mis-
classified DT were confused with ET (4 of 5), and the misclassified ET
equally spread to all the other classes. For method 2, GL had more
apportunities of misclassifing to ET (5 of 7).

The overall accuracy of Method 2 with vegetation pehnology used
in classification was improved by 8.8%, and the user’s accuracies of
classes were increased for all classes ranging from 3.33% of WS to
11.67% of ET and GL. In particular, the three vegetation types were

benefited most from vegetation phenology dynamics, ranging from 10%
to 11.67% with an average increase of 11.1% for user’s accuracy, even
higher for producer’s accuracy (Table 7).

5. Discussion

5.1. The utilization of vegetation phenology can significantly improve the
accuracy urban vegetation classification

The results showed that integrating vegetation phenology derived
from multi-seasonal images with high-resolution remote sensed pro-
ducts could significantly improve classification accuracy, which is
consistent with previous studies using low- and moderate-resolution
images (Hill et al., 2010; Senf et al., 2015; Tigges et al., 2013; Ganguly
et al., 2010; Gonsamo et al., 2012; Hill et al., 2010; Hmimina et al.,
2013). The overall accuracy of Method 2, which deployed phenological
information into the classification, increased by 8.8% from 82.3% of
Method 1–91.1% of Method 2. In particular, the user’s accuracies for
the three vegetation classes were greatly improved by from 10% to
11.67%. The accuracy improvements of DT and GL were mainly re-
sulted from vegetation phenology. In the winter, only few leaves left on
deciduous trees or trees have been changed its color, and the grass is
declining, so the plants reflect yellow light because the reduction of
chlorophyll and the increase of cancroid. Then the changes of spectral
characteristics leading to the changes of NDVI, so we can identify those
vegetation types according to the NDVI differences among multiple
seasons. In addition to phenological dynamics, the abundant spectral
information, the fine scale geographical details, and also the transpar-
ency and size of shadow in different seasons were the important ad-
vantages to the separation of vegetation types.

It should be noted that the ancillary imagery of Method 2 was ac-
quired in late November. In Beijing, the leaves usually began to fall at
mid of October, while the deciduous species still have few leaves left on

Table 4
The summary of features (thresholds) and segmentation scales used in classification for each class.

Class name (Segmentation scale) Feature (threshold)

Water (95) NDWI(0.08)
No-shaded areas & Shaded areas (30) Brightness(25); Mean Red-edge(170)
Tree shadow & Building shadow (95) Area(500pixels); Relative border to vegetation(0.5)
Vegetation (30) NDVI1(0.365); NDVI2(0.35); Mean blue(405)
Shaded Vegetation (50) Tree Shadow NDVI2(0.35 for IMS; 0.23 for IMN); Building Shadow NDVI2(0.2 for IMS; 0.12 for IMN)
Grass/lawns (75) in Non-shaded area Ratio 2/3(0.82); GLCMH_NIR1(0.05); Hue-Red_Green_Blue(0.44)
Grass/lawns (75) in Shaded area Ratio 2/3(0.33); GLCMH_NIR1(0.02); Hue-Red_Green_Blue(0.23)
Deciduous Trees & Evergreen Trees (50) in Non-shaded area Mean NIR2(316.34); Mean RedEdge(350.05); Hue-Edge_NIR1_NIR2(0.32)
Deciduous Trees & Evergreen Trees (50) in Shaded area Mean NIR2(176.28); Mean RedEdge(102.53); Hue-Edge_NIR1_NIR2(0.14)

Fig. 6. The resultant decision tree of the two CART operations. Tree A was generated from the first operation, which was used to separate grass; tree B was generated from the second
operation to separate deciduous trees. The square means “above average” risk, triangle means “below average” risk, and circle means moderate. The figures in parenthesis are thresholds,
and the high values are on the right.
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the trees, and grass is deteriorated but nor ruined. In addition, the
vegetation mosaics in study area are intertwined, and the boundaries
between them are very difficult to accurately delineate. Such dis-
advantages restrict the better performance of phenological dynamics.
Therefore, greater improvement of classification accuracies can be ex-
pected if the imagery was collected on a better date (e.g., January).

5.2. WorldView-2 imagery can be effectively used to map vegetation
functional types in compact urban areas

The comparison between our results and other existing ones from
similar studies related to urban vegetation classification indicates that
the accuracies resulted from the Method 2 of our study are relatively
high (Table 8). The overall accuracies of previous studies ranged from
44.06% to 97.58% in term of different data and methods. The studies
have achieved the overall accuracy higher than 90% (similar to that of
Method 2) either integrated LiDAR with other remote sensed data

Fig. 7. The classification results of a subset of the study area, panel a-the classification obtained from Method 1; panel b-the classification from Method 2; panel c-the subset of the original
imagery corresponding to panel a; panel d-the subset of the original imagery corresponding to panel b.

Table 5
The confusion matrix, accuracies, and Kappa coefficients for Method 1.

Reference Total UA(%)

Classified DT ET GL IS WS

DT 49 8 2 1 0 60 81.67
ET 7 44 5 2 2 60 73.33
GL 5 6 46 2 1 60 76.67
IS 2 4 2 52 0 60 86.67
WS 0 3 1 0 56 60 93.33
Total 63 65 56 57 59 300
PA(%) 77.78 67.69 82.14 91.23 94.92

Overall Accuracy=82.3%; Kappa Coefficient= 0.811.

Table 6
The confusion matrix, accuracies, and Kappa coefficients for Method 2.

Reference Total UA(%)

Classified DT ET GL IS WS

DT 55 4 1 0 0 60 91.67
ET 3 51 2 2 2 60 85
GL 2 5 53 0 0 60 88.33
IS 1 3 0 56 0 60 95
WS 1 0 1 1 57 60 96.67
Total 62 63 57 59 59 300
PA(%) 88.71 80.95 92.98 95 98.31

Overall Accuracy= 91.1%; Kappa Coefficient= 0.881.
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(Tigges et al., 2013; Parent et al., 2015; Zhou and Qiu, 2015) or iden-
tified fewer vegetation types (Sridharan and Qiu, 2013; Myint et al.,
2011) than this study. According to previous studies, LiDAR is a quite
useful in identifying of vegetation functional types, even tree species,
especially when integrating LiDAR with high-resolution remote sensed
images (Alonzo et al., 2014; Li et al., 2013a,b; Yan et al., 2015a, 2015b;
Zhou et al., 2009). However, to this day, the limitations in availability
of LiDAR, and spatial misregistration and radiometric differences

among different data sources, are all restrict the intensive use of LiDAR
(Dare, 2005).

With a single scene of WorldView-2 imagery, the Method 1 obtained
an overall accuracy of 82.3%, with user’s accuracy ranged from 73.33%
to 93.33% for five classes. These accuracies were generally higher than
or equal to those of studies used single time high spatial resolution
imagery (Mallinis et al., 2008; May et al., 1997; Parent et al., 2015),
and also are comparable to those from studies using multiple-source
data (Hill et al., 2010; Tooke et al., 2009; Senf et al., 2015). According
to our results, WorldView-2 imagery could be effectively used to map
vegetation functional types in urban areas, which is consistent with
studies of Chen, 2010 and Pu and Landry, 2012. With a sub-meter
spatial resolution of 0.46m, WorldView-2 imagery can sufficiently
discriminate fine-scale land covers and tree crowns, as well as shadows
in heterogeneous urban environments. In Addition, WorldView-2 ima-
gery owns 8 multi-spectral bands in contrast to most high spatial re-
solution images only has 4 bands. The 8 spectral bands, covering the
wavelength of 400–1040 nm, are sensitive to particular features, and
provide more accurate spectral information for geographic features in
diverse urban environments. The four new additional bands (Coastal
blue, Yellow, Red-edge, and NIR2) enable the images to present the

Table 7
The changes in accuracy between the two classifications, CE=Commission Error;
OE=Omission Error.

Change in percentage (Method 2-Method 1;%)

Class Name PA UA CE OE

DT 10.93 10 −10 −10.93
ET 13.26 11.67 −11.67 −13.26
GL 10.84 11.67 −11.67 −10.84
IS 5.38 8.33 −8.33 −5.38
WS 3.39 3.33 −3.33 −3.39
Average 9% 8.76% −8.76% −9%

Table 8
A list of case studies that focused on vegetation classification.

Case study Study area Data Methods/ Analytical
unit

Total classes & Vegetation classes Overall Accuracy

Li et al. (2015) Beijing, China WorldView-2
WorldView-3

SVM, RF/
OB

4 Tree species 71–82.7% for WV-2
70–76.3% for WV-3
80.3–92.4% for Both

Zhou and Qiu (2015) Dallas, USA WorldView-2
LiDAR

KL/
OB

5 classes &
Trees, grass

89.97% WV-2 only;
97.58% multi-data

Parent et al. (2015) Northeastern
USA

Aerial Image
LiDAR

Ruleset/
PB, OB

5 or 8 classes &
Deciduous, coniferous,
medium vegetation,
low vegetation

93.1% for 8 classes
94.8% for 5 classes

Senf et al. (2015) Southern
Portugal

Multi-Temporal
Landsat TM,
MODIS

SVM/
OB

5 classes &
Wood, shrub, grass

44.06%–74.49%

Puissant et al. (2014) Strasbourg, France QuickBird RF/
OB

9 classes &
Artificial greenspace,
Agricultural land

59.08%–98.65%

Sridharan and Qiu
(2013)

Dallas, USA WorldView-2 FKS,NN, SVM/
OB

6 classes &
Tree, grass

67.98%–90.51%

Tigges et al. (2013) Berlin, Germany Multi-temporal
RapidEye,
LiDAR

SVM/
PB

8 tree genera 63–100%

Li et al. (2013a) Sault Ste. Marie,
Canada

LiDAR Supervised
classification

4 tree species 74.3–81%

Liu and Yang (2013) Atlanta, USA Landsat TM MLC, SMA/
PB

10 classes &
Broad-leaf, needle-leaf, pasture, grass,
cropland, vegetation wetland

69.84–81.63%

Duro et al. (2012) Saskatchewan, Canada SPOT-5 RF, SVM, DT/
PB, OB

6class&
Crop, mixed grassland

87.6–89.7% pixel-based
88.8–94.2% object-based

Al-Kofahi et al. (2012) Albuquerque,
USA

Aerial Image ENVI EX/
OB

4 classes &
Trees, shrub, grass

89%

Pu and Landry (2012) Tampa, USA WorldView-2,
IKONOS

CART, LDA
OB

6 tree species 47.2–67.22%

Myint et al. (2011) Phoenix, USA QuickBird NN,MF
PB
OB

7 classes &
Tree/shrub, grass

67.6% pixel-based
90.4% object-based

Zhang et al. (2010) Nanjing, China IKONOS MLC, CART/
OB

5 classes &
Broadleaf, needle-leaf, weed

75.43%–89.42%

Hill et al. (2010) Cambridgeshire,
UK

Multi-temporal
ATM images

MLC/
PB

6 tree species 35.4–83.8%

Tooke et al. (2009) Vancouver, Canada QuickBird
LiDAR

SMA, DT/
PB, OB

6 class &
Broad-leaf, needle-leaf,
vegetated ground cover

67–80%

Mathieu et al. (2007a) Dunedin,
New Zealand

IKONOS NN
OB

10 or 15 classes &
Tree, shrub, grass

63.6% 15 classes
77.1% 10 classes

Note: OB=Object-based; PB=Pixel-based; KL=Kullback–Leibler (KL) divergence based classifier; SVM=Support vector machine; RF=Random Forest; EX= Feature Extraction
Module; FKS= Fuzzy Kolmogorov-Smirnov Classifier; SMA=Spectral mixture analysis; NN=Nearest neighbor classifier; MF=Membership functional classifier; MLC=Maximum
likelihood classification; DT=Decision tree; CART=Classification and regression tree.
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urban objects as what the human eye perceives (DigitalGlobe, 2009).
For example, Red-edge and NIR2 bands enhanced the high reflectivity
portion of vegetation response (Li et al., 2015), and are critical to
identifying tree types in our study.

The comparison of existing studies emphasized the advantages of
high-resolution images. Therefore, the question of how many scenes of
multi-temporal imagery should be used in a classification to obtain a
reasonable accuracy is need to be answered. While many studies used
high frequency low-resolution imagery throughout a year, even longer
term, to achieved reasonable accuracies, our study suggested that few
high-resolution multi-temporal imagery also can achieve the similar
accuracies. Therefore, more studies of recognizing relationships be-
tween the number of multi-temporal data used in a classification and
the accuracy resulted from the classification are helpful to address the
capacity of phenology dynamics in discriminate different vegetation
types.

6. Conclusions

The mapping of vegetation types at fine scale is a promotion of
ecosystem service valuation, as well as urban GI arrangement. In this
study, the capacity of single WV-2 imagery and the vegetation phe-
nology derived from multi-temporal imagery were tested and evaluated
in identifying vegetation functional types in compact Beijing city.
Classification with single WV-2 imagery achieved an overall accuracy of
82.3%, which indicates that WV-2 imagery is capable of classifying
vegetation functional types in a fragmented landscape. The Red-edge
and NIR2 band contributed more than traditional bands in identifying
vegetation types. The overall accuracy of classification deployed ve-
getation phenology increased by 8.8% in contrast to classification only
using one WV-2 image, and the increase of accuracies of three vege-
tation type ranged from 10% to 13.26%. Therefore, considering the
accuracy, integrating vegetation phenology with few high-resolution
multi-temporal remote sensed images is an efficient way to improve
urban vegetation classification comparing with using more high fre-
quency lower-resolution multi-temporal images.
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