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A B S T R A C T

Tree height is a key variable in forest monitoring studies and for forest management. However, tree height
measurement is time consuming, and the recommended procedure is to use estimates from tree height (H) -
diameter at breast height (DBH) models. Increasingly, H-DBH models are being developed for urban forests,
providing tools to forest management and ecosystem services estimation. Here, we compared model forms and
approaches for predicting H as a function of DBH and additional stand level covariates variables. Four model
forms were evaluated: (i) basic models (which only used DBH as predictor variable); (ii) generalized models
(which used DBH and other predictor variables based on the best basic model); (iii) a mixed-effects model based
on the best basic model; and (iv) a mixed-effects model based on the generalized model. Several sampling
designs aimed at minimizing height measurement were tested in terms of accuracy and applicability. Taking
predicted accuracy and investigation cost into account, we recommend generalized non-linear mixed-effects
model (NLME) when there were two or less tree height measurements taken in a given stand. The basic NLME
model could be calibrated when there were 3 or more tree height measurements, depending on the required level
of accuracy and investigation cost. Additionally, we first reported that soil pH as a covariate variable in H-DBH
model and our generalized NLME model implied that the difference in the H-DBH relationship caused by pH
varies among different stands. This finding may be attributable to differing biological properties of the similar
alkaline tolerance species.

1. Introduction

Individual diameter at breast height outside bark (DBH, measured
1.3 m above ground level) and tree height (H) are key variables in
forestry applications and are used to study forest structure (Curtis,
1967), to estimate timber volume and carbon storage (Curtis, 1967;
McPherson and Peper, 2012), site index and other important variables
(Peng et al., 2001). Information on the height of urban trees is essential
for tree management (McPherson and Peper, 2012), but is often ignored
in municipal tree layer inventories (Rust, 2014). To save time and ex-
pense, tree height is usually measured in a subsample of trees first, and
then the species-specific H-DBH models would be used to overcome the
lack of information about unmeasured tree height (Gómez-García et al.,
2015; Monteiro et al., 2016; Zang et al., 2016a).

There are two basic types of models to describe the relationship
between H and DBH (Lei et al., 2009; Zang et al., 2016a): one is basic
model, assuming that tree height is completely dependent on DBH
(Soares and Tomé, 2002; Gómezgarcía et al., 2014; Mehtätalo et al.,
2015), and the other is generalized model, assuming that tree height is
not only dependent on DBH but also dependent on other tree and stand-
level variables (Soares and Tomé, 2002; Temesgen and Gadow, 2004;
Newton and Amponsah, 2007; Huang et al., 2009). Stand-level vari-
ables incorporated into generalized H-DBH models include i.e. stand
age, density, basal area, crown competition factor, site index, dominant
height and geographic coordinates, etc (Curtis, 1967; Temesgen and
Gadow, 2004; Temesgen et al., 2007; Dahle and Grabosky, 2009;
Schmidt et al., 2011; Dahle et al., 2014; Gómez-García et al., 2015;
Zang et al., 2016a; Adamec and Drápela, 2017; Dahle et al., 2017).
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However, due to the hierarchical structure of the datasets used to
construct H-DBH models (i.e. trees within plots within stands), the
classical regression assumption that measurements are independent is
untenable (Neter et al., 1985). The mixed model technique, as an al-
ternative approach, usually deals with this problem successfully
(Castaño-Santamaría et al., 2013). From a practical point of view, linear
and nonlinear mixed-effects models have been reported to estimate a
more accurate and precise relationship of tree height and DBH than
both conventional linear and nonlinear models (Trincado et al., 2007;
Temesgen et al., 2008; Castaño-Santamaría et al., 2013; Gómez-García
et al., 2015; Zang et al., 2016a).

Compared to the breadth and depth of modelling in the fields of
nature forests, urban forests modelling is in its early phase (McPherson
and Peper, 2012). Unlike in nature forests, models for urban forests are
rare (Rust, 2014). In addition, models developed for nature forests
cannot be directly transferred to urban forests (McHale et al., 2009),
because the urban areas are warmer (Oke, 2010) and more polluted
(Monn et al., 1995), especially in low quality soils (Jim, 1998). These
characters of urban environment would influence tree growth (Jim,
1998; Monteiro et al., 2016).

In recent decades, the speed of urbanization has intensified globally
and over 10% of the world’s population now lives in megacities of 10
million or more (e.g. New York, Shanghai) (Roberts, 2011; UN, 2012).
However, rapid urbanization is associated with problems such as nature
ecosystem destruction and environmental degradation (Bloom et al.,
2008). In addition, this land use change coupled with high nitrogen (N)
deposition also changed nutrient cycling in soils (Chen et al., 2014),
which would reduce the stability of structure and function of urban
forests (He et al., 2016). The Shanghai municipality is a typical example
with environmental problems associated with rapid urbanization in
China (Huang et al., 2013). To improve the situation of the unbalanced
urbanization, Shanghai’s urban forest areas rapidly increased with the
implementation of key forest projects in the last 20 years. As a con-
sequence, forest coverage increased from 3.17% in 1999 to 14% in
2014 (Wang et al., 2013). Particularly, Metasequoia glyptostroboides (Hu
and Cheng) plantation, as ecological public welfare forests, accounted
for 5.7% of Shanghai’s forest area in 2014. M. glyptostroboides is a
species considered extinct and only present in fossil records until its
discovery for the scientific world in 1948 (Chu and Cooper, 1950). In
order to prevent its extinction, seedlings from the seed lot collected
from several population in China had been planted throughout the
world (Satoh, 1998; Williams et al., 2003). In addition to its quick
growth (Wilczyński et al., 2014), its relative adaptation to air pollution
(Zhang et al., 2014) and amelioration of alkaline soil have(Li et al.,
2008) made this tree species an obvious choice of urban foresters (Kim

and Lee, 2016).
Urban forests can potentially mitigate the deterioration of en-

vironmental problems accompanying rapid urbanization via a range of
forest ecosystem benefits and services (Roy et al., 2012). Managing
urban forests to provide more ecosystem services are becoming im-
portant facets of municipal forestry (Young, 2010). Therefore, it has
become an increasingly important part of ecological studies to conduct
research on the structure, function and factors that influence urban
forests (Dwyer et al., 1992; McPherson et al., 1997; Dahle et al., 2014;
Zheng et al., 2018). However, as far as we know, there are rarely im-
pressive models used in total tree height estimation for M. glyptos-
troboides (Mu et al., 2017), more specially even-aged plantation in
urban. This resulted in a lack of inventory and management tools for
this species. Furthermore, up to now, there has not been any study that
considered site characteristics like soil pH and fertility as candidate
variables in nonlinear generalized H-DBH model.

The overall objective of this research was to select suitable plot-
specific H-DBH models for M. glyptostroboides. The basic, generalized
and mixed-effects models were used to develop the H-DBH model based
on the data from the permanent plots established in M. glyptostroboides
plantations over a wide range of growing conditions in Shanghai. The
specific objectives of this study were as follows: (1) to compare basic,
generalized and mixed-effects models; and (2) to test several sampling
designs for minimizing the height measurement effort in terms of ac-
curacy and applicability.

2. Materials and methods

2.1. Study site

The Shanghai Urban Forest Research Network (SUFRN) was estab-
lished in 2011 to monitor the forest ecosystem service, comprising 95
permanent plots (Fig. 1). These monitored plantations originate from
planting and are monoculture with little understory. There was no
treatment on these plantations before and after the plots establishment.
Located at the elevation of 5m above sea level, these plots are in plain
region with annual precipitation ranged from 606 to 1481mm and
annual temperatures ranging from 14.6 to 16.2 °C. Paddy soil (or an-
throsols based on FAO/UNESCO classification) and tidal soil (or fluvi-
sols) are the main soil type distributed in the SUFRN landscape (Xu
et al., 2011).

2.2. Data collection

The trees layer inventory was carried out in 2016 and soil sampling

Fig. 1. Geographical location of the study area and scenery ofM. glyptostroboides within one plot. Red circles represent permanent plots in SUFRN. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article).
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in 2011. Soil organic carbon (SOC), total nitrogen (TN), total phos-
phorous (TP) concentrations at the depths (0–10 cm) and soil pH were
measured. The field inventory and SOC, TN, TP, pH measuring methods
were based on the National Standards of the People's Republic of China
for “Methodology for field long-term observation of forest ecosystem
research” (GB/T 33027-2016). All free standing woody plants with DBH
larger than 5 cm (at 1.3m above the ground) were mapped and tagged.
The DBH of each stem was measured with flexible tape (with a preci-
sion of 0.1 cm) and the height and crown breadth of each stem was
measured using radar distance measurement (Vertex IV, Haglöf Sweden
AB). The dataset presented in this paper were obtained from 17 plots
(each 20m×30m), comprising 1121 stems of M. glyptostroboides. Data
were split into two parts for model fitting and validation by the fol-
lowing method (Zang et al., 2016a): each plot was randomly allocated
to a number between 1 and 17 (e.g. plot1, plot2), and plots whose
number were 1,2 and 3 were assigned as validation data (358 stems in 3
plots) and the rest were fitting data (763 stems in 14 plots). More de-
tails of the plots included in this study can be found in Table 1.

2.3. Analytical framework

The approach taken to achieve our goals was described in the fol-
lowing sections (a–e).

2.3.1. Selection of the basic nonlinear height-diameter model
The 27 models were evaluated as candidate models in this study,

including the Weibull-type function, the Chapman-Richards function,
the modified logistic function, the Korf-type function and Gompertz-
type function (details of the models can be found in (Huang et al., 1992,
2000; Li and Fa, 2011)). All functions were fitted using nonlinear least
squares regression (NLS). The best fitted model for the fitting data was
selected on the following criteria: (i) statistical significance of the es-
timated parameters and (ii) goodness-of-fit statistics (Gómez-García
et al., 2015).

2.3.2. Inclusion of stand variables in the model
Considering the number of parameters and their biological inter-

pretation (Peng et al., 2001) and the variance of the relationship be-
tween height and DBH among forest stands, a generalized model was

constructed through merely re-parameterizing the asymptote parameter
in the best basic model as the functions of covariates variables (Gómez-
García et al., 2015; Zang et al., 2016a). The re-parameterizing progress
was done using linear regression analysis over the candidate covariates
stand variables for each plot. These stand variables were CB (crown
breadth, m), Density (trees per hectare, stems/hm2), Da (arithmetic
mean DBH of each plot, cm), BA (basal area, m2/hm2), pH (soil pH),
AGE (plantation age), CN (soil CN ratio), CP (soil CP ratio), NP (soil NP
ratio). In the analysis, different combinations of these stand variables
were tested. Linear models including different stand variables were
fitted to explain the variation in the model parameters calculated for
each plot(Adame et al., 2008). The linear model selected was that
which showed the minimum RMSE (root mean square error) and BIC
(Bayesian Information Criteria).

2.3.3. Mixed-effects basic and generalized models
Once the best basic and generalized H-DBH model were selected, a

mixed-effects modelling approach (NLME) was used to fit the models. A
general formula for the mixed-effects model is expressed as Eqs. (1) and
(2) (Lindstrom and Bates, 1990). All parameters in the basic and gen-
eralized H-DBH models were tested to incorporate random effects first
(Pinheiro and Bates, 1998), and the model that passed the convergence
test with the lowest BIC was selected as the final model. The hetero-
scedasticity of the residuals in the mixed-effects models was only taken
into account because there was no remeasured height in our dataset.
The maximum likelihood method was used to estimate the parameters
in mixed-effects models. The estimation of random components of the
model parameters (namely calibration process) is expressed as Eq. (3)
(Davidian and Giltinan, 1995). A comprehensive and detailed descrip-
tion of the prediction of random effects parameters can be found in the
literature (Davidian and Giltinan, 1995; Calama and Montero, 2004;
Wang et al., 2007; Castaño-Santamaría et al., 2013).
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where yi is the (ni×1) observation vector of tree heights taken from the
ith plot, f(.) is a nonlinear function, øi is a (r×1) parameter vector (r is
the number of parameters in the model), Xi is the (ni×r) predictor
matrix for the ith plot, and Ri is a (ni×ni) positive-definite variance–-
covariance matrix for the error term, ûi is the estimated prediction
(q×1) vector for random parameters (where q is the number of random
effects parameters in the model), D̂ is the estimated q× q variance-
covariance matrix for among-unit variability, Ẑi is the partial deriva-
tives matrix with respect to the random parameters, R̂i is the estimated
k×k variance-covariance matrix for within-unit variability (k is the
number of sampled trees for calibration), êi is the residual (ni×1) vector
determined by the difference between the observed and predicted
heights using the model, including only fixed effects.

2.3.4. Model assessment and comparison
Statistical and graphical analyses were used to compare model

performance. Three statistical criteria were examined: the adjusted
coefficient of determination (Ra

2) (Eq. (4)), the root mean square error
(RMSE) (Eq. (5)), and the BIC.
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where esti, ith estimated value; obsi, ith observed value; n, number of
observations; p, number of parameters of the model

Table 1
Summary statistics of plots.

Data type Variable Mean Standard deviation Min. Max.

Fitting data H 16.0 6.69 3.5 38.0
DBH 17.8 7.50 5.1 39.6
AGE 21.0 5.86 16.0 35.0
CB 4.1 1.44 1.0 8.7
DEN 1357 831.24 383 2467
Da 17.82 6.29 10.96 30.81
BA 25.67 4.14 19.83 35.32
pH 7.93 0.92 5.73 8.56
CN 9.50 2.64 6.80 16.04
CP 1.84 0.75 0.94 3.49
NP 0.19 0.05 0.13 0.34

Validation data H 12.5 3.42 3.8 24.0
DBH 13.5 4.85 5.3 35.3
AGE 22.0 7.56 17.0 35.0
CB 2.6 0.74 0.9 6.2
DEN 2894 848.68 1517 3850
Da 13.52 3.21 10.66 18.10
BA 53.54 19.24 24.46 70.67
pH 7.98 0.54 7.51 8.81
CN 11.17 4.31 7.30 17.53
CP 1.55 0.42 1.17 2.12
NP 0.15 0.02 0.10 0.16

H: Height/m, DBH: Diameter at breast height/cm, AGE: plantation age, CB:
Crown breadth/m, DEN: Density/trees hm−2, Da: Average DBH of each plot/
cm, BA: Basal area/m2 hm−2, CN/CP/NP: soil CN/CP/NP ratio.
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2.3.5. Sampling design and validation
When validating the mixed effects model, the new sampling data of

the DBH and tree height should be used to estimate the random para-
meters. Since the random parameters obtained by different tree-sam-
pling designs were not the same, the prediction accuracy varied greatly
when estimating the height of the trees not being measured in the
sample plots. According to some preliminary studies with different tree-
sampling designs (Gómez-García et al., 2015; Zang et al., 2016b;
Adamec and Drápela, 2017), arithmetic mean DBH tree-sampling de-
sign was selected. Using this method, 1 to 4 trees within± 2 cm from
the arithmetic mean DBH were randomly selected per plot in the vali-
dation dataset (Table 1).

All calculations were performed using R software (R Development
Core Team) and JMP software (JMP 13.0 for Mac; SAS Institute Inc.,
NC, USA). The basic model and generalized models were fitted by the
nonlinear least squares method with the stats package, and the mixed-
effects models were fitted with the nlme package. The linear modelling
was performed using JMP Stepwise Regression procedure.

3. Results

3.1. Basic and generalized H-DBH model

The modified Logistic-type function was found to produce the most
satisfactory basic model (Eq. (6)). The asymptote parameter βasymptote in
Eq. (6) was best expanded with stand variables pH, AGE and Da (Eq. (7),
linear regression analysis results can be found in Table S1 in Supple-
mentary Material A). Thus, the generalized model can be constructed as
Eq. (8). Parameter estimates and fit statistics for both basic and gen-
eralized NLS models are listed in Table 2. The pH, AGE and Da sig-
nificantly affected the parameter β1, β2, β3 in Eq. (8). The generalized
H-DBH model produced better results than basic model (with BIC de-
creased from 3994.60 to 3523.46, Ra

2 improved from 0.76 to 0.87,
RMSE decreased from 3.26m to 2.36m). Therefore, the generalized H-
DBH model improved model performance.
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3.2. Mixed-effects basic and generalized H-DBH model

Parameter estimates and fit statistics for both basic and generalized
NLME models are listed in Table 2. Random effects of plots were found
significant for both basic and generalized NLME models, which in-
dicated the variation of the H-DBH relationship among plots. The re-
sidual plot showed homogeneous variance over the full range of the
predicted values (Fig. 2). Thus, no variance functions were used in this
study.

= +
+

+ − − −
H

β u
exp β DBH β u

1.3
1 [ ( )]

0 0

1 2 2 (9)

= +
+ + × + × + + ×

+ − −
H

β u β pH β AGE β u D
exp β DBH β

1.3
( )

1 [ ( )]
a0 0 1 2 3 3

4 5 (10)

The NLME produced better results than NLS (Eqs. (9) and (10)). For the
basic NLS and basic NLME model, BIC reduced from 3994.6 to 3463.33,
Ra

2 improved from 0.76 to 0.90, RMSE reduced from 3.26m to 2.14m.
Similar results were found for the generalized NLS and generalized
NLME model, where BIC reduced from 3523.46 to 3449.98, Ra

2 im-
proved from 0.87 to 0.90, RMSE decreased from 2.36m to 2.15m. In
addition, the boxplots of residuals against diameter classes showed the
NLME models were superior to the basic and generalized NLS models in
term of estimation accuracy and stability (Fig. 3), especially with less
variability from 16 to 38 diameter classes. For NLME models, in spite of
the slight increase in RMSE from the basic to the generalized, BIC re-
duced from 3449.98 to 3463.33. In addition, Likelihood ratio test
showed that the difference of goodness-of-fit between the basic NLME
and the generalized NLME was significant (Model 3 vs. 4, p＜0.0001)
(Table 2).

3.3. Sampling designs comparison

By analyzing the relationship between the sample size and the

Table 2
Parameter estimates and statistical criteria for four candidate models.

Item NLS NLME

Basic model Generalized model Basic model Generalized model

β0 43.41(4.31) -8.53(1.25) 20.94(1.68) -9.77(3.59)
β1 0.08(0.01) 1.82(0.14) 0.15(0.013) 1.89(0.45)
β2 26.60(2.51) 0.24(0.03) 8.85(0.79) 0.25(0.09)
β3 0.50(0.04) 0.50(0.11)
β4 0.11(0.01) 0.12(0.01)
β5 8.57(0.75) 8.07(0.62)
δ02 36.69 1.74
δ22 5.86
δ32 5.84e-09
δ02 14.37
δ03 3.03e-06
δ2 4.68 4.72
Ra

2 0.76 0.87 0.90 0.90
RMSE 3.26 2.36 2.14 2.15
BIC 3994.6 3523.46 3463.33 3449.98
Model 1 2 3 4
df 4 7 7 10
logLik −1984.03 −1738.50 −1708.43 −1691.80
Test 1 vs. 2 2 vs. 3 3 vs. 4
L.Ratio 491.05 584.45 33.26
p-value 　 ＜0.0001 ＜0.0001 ＜0.0001

Note: Standard deviation in brackets. All parameter estimates statistically sig-
nificant. δi2 is the variance for ui, δij is the covariance between ui and uj, δ2 is the
variance for error, df is degree of freedom, logLik is log Likelihood, L.Ratio is
Likelihood ratio.

Fig. 2. Residual plots of height-diameter model forMetasequoia glyptostroboides.
a: basic NLS model, b: generalized NLS model, c: basic NLME model, d: gen-
eralized NLME model.
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prediction accuracy under different sampling designs, we found that the
prediction accuracy could be improved obviously for basic NLME model
as the sample size increases. However, the prediction accuracy of the
generalized NLME almost kept the same as the sample size increases.
Furthermore, when sample size less than 3, the prediction accuracy of
the generalized NLME was better than the basic NLME model. When

sample size more than 3, basic NLME model predicted better (Figs. 4
and 5).

4. Discussion

In this study, basic and generalized NLS models and their NLME
models were developed and compared for M. glyptostroboides planta-
tions in Shanghai. Among these models, the NLME models ranked
higher in terms of their goodness-of-fit and precision. The generalized
NLME model that includes stand variables captured between-stand
variation and pH, AGE and Da significantly influenced the relationship
between H and DBH.

Numerous studies reported that the Chapman-Richards function
demonstrated satisfactory performance in terms of fit statistics (Huang
et al., 1992; Zang et al., 2016a, b). This function is versatile for mod-
elling the H-DBH relationship and can approach the asymptote quickly
when there is a weak relationship between H and DBH. However, the
modified Logistic-type function was found to produce the most sa-
tisfactory NLS model in this study. Huang et al. (2000) also reported
similar results with a large number of height-diameter functions eval-
uated using felled tree data for white spruce (Picea glauca (Moench)
Voss) grown in Alberta's boreal forests. The logistic-type function was
found to produce the most satisfactory fits (Huang et al., 2000).

In the selected NLS model, the asymptote parameter was best ex-
panded with stand variables pH, AGE and Da. In previous studies, the
relationship between H and DBH was found to vary at stand level due to
differences in e.g. age, site index (SI) and competition status (Zang
et al., 2016a). BA, which simultaneously indicates the tree size and
stand density, quantified the competition status and affected the H-DBH
relationship. Age was regarded as a good indicator of the mean size of
the individual trees (Castedo et al., 2006) and could adequately char-
acterize the H-DBH relationships (Zhang, 1997). However, the inclusion
of stand age as a stand variable makes the use of the model suitable only
to even-aged forests (Adamec and Drápela, 2017). For instance, the
mixed-effects generalized model developed larch plantations implies
that the difference in the H-DBH relationship caused by age varies
among different species in different locations (Zang et al., 2016a). In
addition, a substantial number of studies have found that dominant
height and SI (site index) are good covariates in the H-DBH model and
can reduce prediction errors (Castedo et al., 2006; Gómez-García et al.,
2015). For instance, dominant height and BA of the stand were found to
produce the most satisfactory fits in the stand model taken at 950
Spanish National Forest Inventory plots embracing six different bio-
geoclimatic strata (Adame et al., 2008). However, Sharma and Zhang
(2004) also reported that the inclusion of SI did not increase predictive
accuracy (Sharma and Zhang, 2004). Unfortunately, as no dominant
height measurements and SI were available in SUFRN plots in our in-
ventory, they were not taken into account in this study (He et al., 2009).
A tree's CB affects the form of the tree and, as a result, the H-DBH

Fig. 3. Boxplots of residuals against diameter classes.

Fig. 4. Graphs of observed values (black solid dots) and fitted curves (lines in
different colors) generated by the basic and generalized NLME models based on
different sample sizes. PREb0, PREb1, PREb2, PREb3, PREb4 are fitted curves
generated by the basic NLME models based on sample sizes from 0 to 4. PREg0,
PREg1, PREg2, PREg3, PREg4 are fitted curves generated by the generalized
NLME models based on sample sizes from 0 to 4.

Fig. 5. Relationship between predicted accuracy and sample size under ar-
ithmetic diameter sampling design.
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relationship (Larson, 1963). Temesgen et al. (2007) reported that the
inclusion of the crown competition factor in larger trees in the H-DBH
model increased the accuracy of prediction for all species (Temesgen
et al., 2007). However, CB did not significantly influence the relation-
ship between H and DBH in our study. Additionally, there has been no
study that reported soil pH as a significant covariate variable in H-DBH
model and our generalized NLME model implied that the difference in
the H-DBH relationship caused by pH varied among different stands.
This finding may be attributable to differing biological properties of the
similar alkaline tolerance species.

The applicability of the proposed NLME model in practice has been
assessed by comparing the effect of different number of selecting trees
for height measurement to be used in the calibrated conditional pre-
diction. The results of this study confirm that the goodness-of-fit of the
model increases by increasing the number of measured trees, in ac-
cordance with Zang et al. (2016b) and Adamec and Drápela (2017).
Zang et al. (2016a, b) reported that arithmetic diameter tree sampling
was better than others and predicted accuracy could be improved ob-
viously when four arithmetic diameter trees were sampled per plot
(Zang et al., 2016b). Adamec and Drápela (2017) reported similar re-
sults, a number (up to 6 or 9) of the required measured heights through
the calibrated model kept predictability, meanwhile ensured a reduc-
tion in costs and time of data collection (Adamec and Drápela, 2017).

In previous studies, the parameters in H-DBH model have been
empirically fitted, however, they could also be linked to the biophysical
constraints (Watt and Kirschbaum, 2011). According to the morphology
of light demanding trees, rapid height growth of conifers in even-aged
stands is advantageous to access more light resource (Wickens and
Horn, 1972). However, preferential carbon allocation to height is al-
ways at the expense of diameter increase (West et al., 1999). Biogeo-
chemical studies in urban and suburban areas showed that soil C, N, P
dynamics are being influenced by urbanization (Liu et al., 2011; Chen
et al., 2014), which would further influence the stability of structure
and function of urban forests (He et al., 2016). Watt and Kirschbaum
(2011) found that CN ratio strongly influenced the slope of the loga-
rithmic H/D relationship (Watt and Kirschbaum, 2011). However, CN,
CP and NP ratio did not significantly influence the asymptote parameter
in this study. Considering the characters of urban environment that
influenced tree growth were complex, taking the soil fertility and even
pH as candidate stand variables into the H-DBH model construction was
not enough. Rainfall, spring temperature (Watt and Kirschbaum, 2011),
infiltration rates in soil (Lai and Ghosh, 2017), or ozone could influence
the tree growth. Testing these candidate variables combined in gen-
eralized models should be done in future study. Furthermore, NLS and
NLME models with calibrated conditional predictions were compared.
In addition to traditional regression and mixed-effects models, some
suitable alternative methods could also be considered, among which are
CART (classification and regression trees) (Adamec and Drápela, 2017),
QR (quantile regression) (Zang et al., 2016a), GAM (generalized ad-
ditive model) (Zang et al., 2016a). The different performance of these
candidate methods would be tested in future study.

We concluded that the NLME models with calibrated conditional
prediction are best suitable for the M. glyptostroboides. Taking predicted
accuracy and investigation cost into account, we recommend general-
ized NLME model when there were 2 or less tree height measurements
taken in a given stand. The basic NLME model could be calibrated when
there were 3 or more tree height measurements, depending on the re-
quired level of accuracy and investigation cost.
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