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ABSTRACT 
Although there is an increasing interest in using infrared spectroscopy for the simple, rapid, and 
inexpensive prediction of soil organic carbon content, few studies have used this technique to measure 
organic carbon chemistry. In this paper, based on both near-infrared and mid-infrared diffuse reflectance 
spectroscopy, we compared the use of instrumentation, spectral pretreatment, and regression method 
for the prediction of three parameters related to organic carbon content, one related to isotopic 
composition, and five related to organic carbon chemistry. A total of 140 soil samples collected from 
seven oriental oak forest sites across East China were used as the data set for the calibration-validation 
procedure. Calibrations using sample set partitioning based on joint x-y distances method significantly 
outperformed those using Kennard-Stone method. Compared to models using linear method (i.e., partial 
least squares), those using non-linear regression method (i.e., support vector machines) greatly improved 
the prediction precision of the alkyl-to-O-alkyl ratio and performed slightly better for the other organic 
carbon chemical compositions. Instrumentation had a large effect as mid-infrared models had higher 
average prediction accuracies than near-infrared models. We finally proposed a model using second 
derivative preprocessing, joint x-y distances based sample set partitioning, mid-infrared spectra, and 
support vector machines regression to quantify organic carbon chemistry in this study. The results are 
helpful for the further study of soil composition measurement. 
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Introduction 

Soil organic carbon (SOC) is extremely important due to its 
large quantity stored in soil and its strong coupling to atmos-
pheric CO2.[1] Although SOC is more commonly reported in 
terms of its gravimetric content (g C/g soil), knowledge on 
the chemical composition of SOC is also needed for estimates 
on C sequestration and decomposition processes.[2] Nuclear 
magnetic resonance (NMR) spectroscopy is commonly used 
for characterizing SOC chemistry but is prohibitively 
expensive, time-consuming, and technically demanding;[3] 

stable isotope ratio mass spectrometry for measuring δ13C 
value (an important indicator of SOC decomposition) has 
similar disadvantages. Thus, the use of the two techniques is 
currently beyond the reach of many labs. 

Being able to quantify the nature of chemical bonds in soils, 
infrared (IR) spectroscopy offers a promising alternative as it 
is rapid, simple, and cost effective.[4] As two commonly used 
infrared reflectance spectra involved in soil quantitative analy-
sis, diffuse reflectance infrared Fourier transform spectroscopy 
(DRIFT) is usually used on dried/ground soils, and total 
attenuated reflectance spectroscopy (ATR) is applied to soil 
pastes.[5,6] Many studies have used IR spectroscopy to quanti-
tatively predict soil C content, and these findings have been 
reviewed.[6,7] Nevertheless, only few studies have attempted 
to predict the percentages of four broad classes of NMR- 
derived carbon types using infrared spectra,[2,3,8,9] and to our 

knowledge, no study has utilized IR spectroscopy to quantify 
δ13C in forest soils. 

Over several decades, near-infrared (NIR) diffuse reflec-
tance spectroscopy has been shown to be versatile for soil C 
determination. Yet some researches have demonstrated that 
for the analysis of soil C, mid-infrared (MIR) diffuse reflec-
tance spectroscopy is often more accurate and produces more 
robust calibrations than NIR when analyzing ground, dry soils 
under laboratory conditions.[7] Although both NIR[2] and 
MIR[3,8,9] have been used for predicting C species as revealed 
by NMR, none of these studies have made a direct comparison 
between the two instruments. 

Since soil constituents interact in a complex way to produce 
a given spectrum, NIR and MIR spectra usually combine mul-
tivariate regression methods to develop models for measuring 
soil properties.[10] There are two key points in the develop-
ment of a prediction model: (i) spectral pretreatment and 
(ii) model development.[11] Aiming at increasing variations 
in the signal, pretreatment of the spectral data before model 
development is viewed as a critical step, and a fine threshold 
needs to be found between removing noise and removing 
information. Only very few studies have referred to compari-
sons among different preprocessing methods.[11] Model devel-
opment is also of importance. The linear partial least square 
(PLS) has commonly been used in spectral calibration and 
validation; other nonlinear techniques (e.g., artificial neural 
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networks (ANN) and support vector machines (SVM)) have 
received much less attention. Although several studies have 
reported using SVM and ANN models for soil cation exchange 
capacity prediction[12] and soil organic carbon measuring,[13] 

there is no report of using SVM for the analysis of soil organic 
carbon composition as indicated by 13C NMR spectra. 

In the present study, based on the DRIFT spectra of both 
NIR and MIR, we experimented with the use of various spec-
tral pretreatment methods as well as linear and non-linear 
regression methods for the prediction of the following soil 
properties: (i) elemental composition: total carbon (C) con-
tent, total nitrogen (N) content, the C/N ratio; (ii) isotopic 
composition: δ13C value; (iii) chemical composition: the 
proportions of alkyl C, O-alkyl C, aromatic C, carbonyl C, 
and the alkyl-to-alkyl (A/O) ratio. By making comprehensive 
comparisons from the aspects of instrumentation, regression 
method, and preprocessing method, we tried to determine 
an optimal IR model for predicting both SOC content and 
composition in oriental oak forest soils of East China. 

Experimental 

Soil sample collection 

The sampling procedure has been described in detail by Yu 
et al.[14] In July 2014, seven oriental oak stands in East China 
were sampled along a latitudinal gradient, extending from 
Beijing (40.25°N, 117.12°E) to Jiangxi (29.09°N, 115.62°E) 
(Supplementary Fig. 1). At each site, mineral soils at four 
depths (0–2, 2–5, 5–10, and 10–20 cm) were sampled in five 
parallel transects with 10 m spacing between them, resulting 
in a total of 140 soil samples (7 sites � 5 replicates � 4 depths). 
The samples covered a wide range of soil types, textures, and 
colors as well as climatic conditions and thus presented a 
harsh test on the applicability of IR for the prediction of 

several soil characteristics from different sites and under 
different climatic conditions. Prior to analysis, mineral soils 
were sieved (2 mm), air-dried, smashed, and screened through 
mesh size of 80 (0.18 mm). Each sample was divided into two 
parts, one for laboratory chemical analyses and one for optical 
measurements. 

Elemental, isotopic, and 13C-NMR analyses 

The isotopic composition, total carbon, and nitrogen of these 
samples were measured on a Vario EL III Elemental Analyzer 
coupled to an Isotopic Ratio Mass Spectrometer (Elementar 
Analysensysteme GmbH, Germany). C isotopic results were 
expressed in the δ-notation, as the ‰ variation from the 
standard reference material, Pee Dee Belemnite (PDB). 

Two of the five replicates for each depth and site were used 
for NMR analysis. Prior to NMR analysis, the total 56 mineral 
soil samples (7 sites � 2 replicates � 4 depths) were treated 
with hydrofluoric acid (HF) to concentrate the organic matter 
and remove paramagnetic minerals.[15] The CP-MAS 
13C NMR spectra were acquired on a Bruker Avance 
400 MHz NMR spectrometer, equipped with a 4 mm 
broadband CP-MAS probe. The detailed procedures for 
sample pretreatment and spectra acquisition could refer to 
Yu et al.[14] The spectra were integrated into the following 
chemical shift regions: alkyl carbon (0–50 ppm), O-alkyl 
carbon (50–110 ppm), aromatic carbon (110–160 ppm), and 
carbonyl carbon (160–200 ppm).[16] 

Infrared spectral reflectance measurements 

NIR spectra were acquired using a Nicolet 6700 spectrometer 
(Thermo Fisher Scientific Inc., MA, USA) equipped with a 
white-light source, a CaF2 beam-splitter, an InGaAs detector, 
and an NIR diffuse reflectance accessory (Pike Technologies, 

Figure 1. Comparison of performances of models developed with combinations of two instruments and two regression methods for total carbon (C) content, total 
nitrogen (N) content, the C/N ratio, and δ13C value. Sample set partitioning based on x-y distances method was used. NIR, near-infrared spectra; MIR, mid-infrared 
spectra; PLS, partial least squares regression; SVM, support vector machines regression; r, correlation coefficient; RMSEP, root mean square error of prediction; RPD, 
ratio of performance to standard deviation.  
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WI, USA); spectra were acquired over 10000–4000 cm� 1 with 
a resolution of 4 cm� 1. MIR diffuse reflectance spectra were 
also acquired using the Nicolet 6700 spectrometer, equipped 
with a KBr beam-splitter, a MCT detector, and a MIR diffuse 
reflectance accessory (Pike Technologies, WI, USA); spectra 
were acquired over 4000–650 cm� 1 with a resolution of 
4 cm� 1. Approximately 200 mg of ground, air-dried soil was 
placed into an 11 mm stainless steel cup, and the surface was 
smoothed. A total of 64 scans were acquired and averaged to 
produce a reflectance spectrum for each individual soil sample. 

Chemometric analyses—spectral pretreatment and 
sample set partitioning 

In order to decrease the noise and enhance possible spectral 
features linked to the property studied, the raw NIR and 
MIR reflectance spectra were corrected for effects of 
atmospheric CO2 and water vapor, converted into absorbance 
spectra (log transform of the inverse of reflectance) and 
automatically baseline-corrected (obtained by polynomial 
fitting) by Omnic software Version 8.2 (Thermo Fisher Scien-
tific, Waltham, MA, USA). The preprocessed spectra were 
then imported into Matlab R2009a (The MathWorks, Natick, 
MA, USA) and subjected to gap derivation;[17] the segment 
length in data points over which the derivative was taken 
and the segment length over which the function was smoothed 
were both set to 7,[18] and both first derivative and second 
derivative were tried. Multiplicative scatter correction (MSC) 
was also tried.[19] 

The total number of spectra (140 for elemental and isotopic 
analyses and 56 for NMR analyses) was divided into two sets of 
75% and 25%. The former set was used to establish the cali-
bration models, and the latter one was used for independent 
validation of the established models. The method for separating 
calibration and validation sets was also of importance, and we 
compared Kennard-Stone (KS) method[20] and sample set par-
titioning based on joint x-y distances (SPXY) method.[21] Four 
combinations of treatments were compared in our study: first 
derivative þ SPXY, MSC þ first derivative þ SPXY, second 
derivative þ SPXY, and first derivative þ KS. Each pretreat-
ment was then calibrated to SOC with a multivariate model. 

Chemometric analyses—partial least-squares 
regression and prediction 

Two different calibration techniques were used, namely, PLS 
and SVM. The linear PLS is commonly used for quantitative 
spectral analysis and projects predictors (X spectra) and 
response (Y laboratory data) into a low-dimensional space 
(i.e., a set of orthogonal variables called latent variables that 
maximize the covariance between X- and Y-scores).[22] In 
order to avoid the problem of overfitting, a critical step in 
the algorithm is the determination of the appropriate number 
of latent variables. This was usually determined by minimizing 
the value of root mean square error of cross validation 
(RMSECV) by K-fold cross-validation.[23] In our study, 
both the maximum number of latent variables and K were 
set to 20. 

Chemometric analyses—support vector machines 
regression and prediction 

SVM has been developed to solve nonlinear regression prob-
lems with a limited number of observations. In support vector 
regression, the input x is first mapped into a higher dimensional 
feature space by the use of a kernel function, and then a linear 
model is constructed in this feature space. We selected the radial 
basis function (RBF) kernel due to computational convenience. 
Thus, the performance of SVM for regression depends on the 
combination of the following factors: regularization parameter 
C, ε of ε-insensitive loss function, and the width γ of the radial 
basis function. A systematic grid search was carried out to select 
the proper values for the C, ε, and c; the set of values with the 
best five-fold cross-validation performance is selected for 
further analysis.[24] Matlab R2009a was used for all calculations. 
The PLS and SVM models were implemented with a toolbox 
developed by Hong-Dong Li et al.[25] and a package developed 
by Chih-Chung Chang et al.,[26] respectively. In both of two 
models, the data were mean-centered before model training to 
avoid inconsistent dimension. 

Chemometric analyses—performance measures 

Three performance criteria, correlation coefficient (r), root 
mean square error of prediction (RMSEP), and ratio of perfor-
mance to standard deviation (RPD), were used in this study to 
assess the goodness of fit of the models. The r is a statistical 
measure of how well the predicted data is close to the observed 
data, and a perfect model will have a value of 1. The RMSEP 
can provide a balanced evaluation of the goodness of fit of 
the model as it is more sensitive to the larger relative errors 
caused by the low value, and the perfect model will have a 
value of 0. RPD is also commonly used to evaluate calibration 
accuracy. Viscarra Rossel et al. classified RPD values as fol-
lows: RPD < 1.0 indicates very poor predictions; RPD between 
1.0 and 1.4 indicates poor predictions; RPD between 1.4 and 
1.8 indicates fair predictions; RPD between 1.8 and 2.0 indi-
cates good predictions where quantitative predictions are poss-
ible; RPD between 2.0 and 2.5 indicates very good predictions; 
and RPD > 2.5 indicates excellent predictions.[27] 

Results and discussion 

Elemental and isotopic composition of SOC 

Table 1 listed some statistical descriptions of soil carbon 
properties using regular laboratory analyses. Figure 1 pre-
sented the correlation coefficient (r), root mean square error 
of prediction (RMSEP), and ratio of performance to standard 
deviation (RPD) for total carbon (C) content, total nitrogen 
(N) content, the C/N ratio and δ13C value when prediction 
models were developed with four combinations of instruments 
(NIR, MIR) and regression methods (PLS, SVM) by using the 
same preprocessing method (first derivative þ SPXY). The 
results showed that four models all had good performances 
in predicting the above four parameters in mineral soils. The 
average r, RPD, and RMSEP of the four prediction models 
were 0.95, 4.06, and 0.35% for C, 0.97, 4.89, and 0.02% for 
N, 0.94, 2.97, and 0.46 for the C/N ratio and 0.98, 4.62, and 
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0.56‰ for δ13C. Infrared analysis is well suited for SOC 
analysis because of its sensitivity to the C-H, C-O, and C-N 
functional groups that dominate in organic matter,[28] and this 
is most likely responsible for the good ability of infrared 
spectroscopy to quantify SOC content documented in our 
manuscript and many other literatures.[29,30] Although IR 
spectra seem to contain no direct information related to 13C 
due to their low sensitivity, a possible explanation of our 
successful δ13C prediction is that the spectroscopy is based 
on the same changes in C composition that the δ13C 
differences are used to determine or are based on.[31] Specifi-
cally, the model combining MIR with SVM had the highest 
prediction accuracy (highest RPD and r, and lowest RMSEP) 
for all the four parameters (Fig. 1 and Table 2). 

Chemical composition of SOC 

Table 3 presented the r, RPD, and RMSEP for the five 
parameters related to SOC chemical composition when models 
were developed with 16 combinations of 4 different preproces-
sing methods, 2 instrumentations, and 2 regression methods. 
Compared to the above characteristics, chemical composition 
of SOC was more difficult to be accurately predicted by IR 
spectra, especially for carbonyl C, as indicated by lower r 
and RPD in some of the models listed in Table 3. In spite of 
the fact that the performance of a model was dependent on 
instrument, pretreatment, and regression, we tried to find 
some general trends by making the following comparisons 
and decide an optimal model for prediction of the chemical 
composition of SOC under oriental oak in this study. 

Effect of spectral preprocessing methods on SOC chemical 
composition 
The results in Table 3 showed that the effect of pretreatment on 
the prediction accuracy of SOC composition varied with 

instrument and regression method. These results are consistent 
with the literatures.[11,32] This situation makes the inter-
pretation of the effect of each method difficult, since for a 
given parameter (i.e., carbonyl C), a method (i.e., first 
derivative þ SPXY) working well in a specific model (i.e., PLS 
þMIR) did not perform well in others (i.e., SVM þNIR). 
However, MSC þ first derivative þ SPXY method generally 
performed better compared to the other three preprocessing 
methods (average values of the four models for r ¼ 0.84–0.92, 
RMSEP ¼ 0.41%–0.92% for the percentages of four NMR 
C groups and 0.02 for the alkyl-to-O-alkyl ratio, and 
RPD ¼ 1.77–2.53), while first derivative þ KS method usually 
gave the lowest prediction precision (average values of the four 
models for r ¼ 0.40–0.80, RMSEP ¼ 0.65%–1.50% for the pro-
portions of four NMR C types and 0.02 for the alkyl-to-O-alkyl 
ratio, and RPD ¼ 0.68–1.80). Our results suggested that sample 
set partitioning method played a key role in the prediction 
model, which have been largely ignored. The SPXY method 
employs a partitioning algorithm that takes into account the 
variability in both x and y-spaces, and the multidimensional 
space may be covered more effectively in comparison with par-
titioning schemes based on x-information alone (such as the 
Kennard–Stone (KS) algorithm) or random sampling (RS).[21] 

This might be a possible reason why SPXY method was much 
more suitable for SOC chemical composition prediction than 
KS method in our study. 

Effect of regression methods on SOC chemical composition 
As far as we know, it is the first time that a non-linear 
regression method (i.e., SVM) has been used to predict the 
chemical composition of SOC as indicated by NMR; naturally, 
we compared the performances of traditional PLS models with 
SVM models. As demonstrated in Table 3, the choice of the 
regression method was also of importance. By averaging the 

Table 2. Performance parameters for the predictions of various soil carbon attributes using mid-infrared spectra þ support vector machines regression models. Soils 
were collected from seven oriental oak forest sites along a 1500-km latitudinal gradient in East China, and some basic soil properties could refer to Table 1. Sample set 
partitioning based on x-y distances method was used. C, regularization parameter; γ, width of the radial basis function; r, correlation coefficient; RMSEP, root mean 
square error of prediction; RPD, ratio of performance to standard deviation.  

Soil properties Spectral pretreatment Model c, c r RMSEP RPD  

Basic characteristics C (%) 1st derivative  2.00, 0.0010  0.99  0.19  7.02 
N (%) 1st derivative  2.00, 0.0010  0.99  0.01  7.95 

C/N ratio 1st derivative  5.66, 0.0010  0.96  0.35  3.62 
Isotopic characteristics Delta 13C (‰) 1st derivative  4.00, 0.0010  0.99  0.43  5.96 
NMR characteristics Alkyl C (%) 2nd derivative  0.71, 0.0010  0.86  0.95  1.92 

O-alkyl C (%) 2nd derivative  1.00, 0.0014  0.92  0.45  2.62 
Aromatic C (%) 2nd derivative  4.00, 0.0010  0.93  0.43  2.67 
Carbonyl C (%) 2nd derivative  1.41, 0.0055  0.95  0.45  2.03 
Alkyl/O-alkyl C 2nd derivative  0.71, 0.0020  0.95  0.03  2.30   

Table 1. Statistical description of the observed soil carbon properties using conventional laboratory analyses. Soils were collected from seven oriental oak forest sites 
along a 1500-km latitudinal gradient in East China.  

Soil properties ncalib/nvalid
a Mean Range Standard deviation  

Elemental characteristics C (%) 105/35  3.0  0.6 ∼ 8.0  1.6 
N (%) 105/35  0.24  0.07 ∼ 0.55  0.11 

C/N ratio 105/35  12.1  9.3 ∼ 15.8  1.4 
Isotopic characteristics Delta13C (‰) 105/35  � 23.6  � 27.6∼� 13.1  2.8 
NMR characteristics Alkyl C (%) 42/14  27.7  24.0 ∼ 32.8  2.1 

O-alkyl C (%) 42/14  44.8  40.7 ∼ 52.2  2.1 
Aromatic C (%) 42/14  15.0  12.8 ∼ 18.6  1.3 
Carbonyl C (%) 42/14  12.5  10.6 ∼ 14.9  0.9 
Alkyl/O-alkyl C 42/14  0.62  0.46 ∼ 0.81  0.07 

ancalib/nvalid show the number of samples used in the spectral calibration and validation, respectively.   
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results of two instruments and three pretreatment methods 
(the results of first derivative þKS method were removed 
due to the poor performances), both PLS and SVM models 
had the ability to predict SOC composition within 
acceptable limits. SVM models were slightly better than PLS 
models, with r ranging from 0.77 to 0.90 for SVM vs. 
0.75–0.91 for PLS, and RPD ranging from 1.76 to 2.22 for 
SVM vs. 1.52–2.29 for PLS. Specifically, the average prediction 
precision of the alkyl-to-O-alkyl ratio (an important index of 
SOC stabilization) was greatly improved by SVM (r ¼ 0.89 
and RPD ¼ 2.07) compared to PLS (r ¼ 0.76 and RPD ¼ 1.55). 
Although no literature has compared the performances of 
PLS against SVM for prediction of SOC chemical 
composition, research has showed that nonlinear responses 
such as SVM perform better when compared to the traditional 
PLS for soil analysis.[33] This might partly be due to the 
good abilities of SVM to generalize and to deal with sparse 
data.[34] 

Effect of instruments on SOC chemical composition 
Still shown by Table 3, the effect of instruments on the 
prediction precision is larger than regression methods. For 
all parameters except the alkyl-to-O-alkyl ratio, MIR instru-
ment gave significantly better results than NIR instrument. 
Averaging results of the six combinations of two regression 

methods and three pretreatment methods, r varied from 
0.81 to 0.93 for MIR and from 0.63 to 0.88 for NIR, and 
RPD ranged between 1.83 and 2.35 for MIR and between 
1.42 and 2.15 for NIR. Specifically, the average prediction 
precision of the percentage of carbonyl C was dramatically 
improved by MIR (r ¼ 0.90 and RPD ¼ 2.13) compared to 
NIR (r ¼ 0.63 and RPD ¼ 1.42). For second derivative þ SPXY 
method, MIR units gave better results than NIR units for 
all the five parameters. Many papers have demonstrated that 
for the determination of soil C content, MIR often produces 
more robust calibrations than NIR when analyzing ground, 
dry soils under laboratory conditions;[7,28] MIR also performed 
better than NIR in predicting SOC chemical composition in 
our study. Peaks in the MIR are frequently better resolved 
and much more intense and contain better information related 
to SOC (such as alkyl C (wavenumbers 3000–2800 cm� 1), 
C-O-C from polysaccharides (1080–1060 cm� 1), aromatic 
carbonyl bands (1700 and 1510 cm� 1), and aromatic C=C 
stretching vibrations (at around 1610 cm� 1), and C=O from 
carboxylic acids, aldehydes, and ketones (1700–1640 cm� 1)), 
while frequencies in the NIR are generally overtones and 
combination bands from the fundamental vibrations 
occurring in the MIR.[8,28,30,35,36] This might partly explain 
why MIR analysis substantially outperformed NIR when 
analyzing SOC. 

Table 3. Effects of preprocessing methods, instruments, and regression methods on the prediction of five parameters related to soil carbon chemical composition. 
Soils were collected from seven oriental oak forest sites along a 1500-km latitudinal gradient in East China, and some basic soil properties could refer to Table 1. P1, 
first derivative preprocessing þ sample set partitioning based on joint x-y distances method; P2, multiplicative scatter correction followed by first derivative 
preprocessing þ sample set partitioning based on joint x-y distances method; P3, second derivative preprocessing þ sample set partitioning based on joint x-y 
distances method; P4, first derivative preprocessing þ sample set partitioning based on Kennard-Stone method; NIR, near-infrared spectra; MIR, mid-infrared spectra; 
PLS, partial least squares regression; SVM, support vector machines regression; n, the number of latent variables in the partial least squares regression models; r, 
correlation coefficient; RMSEP, root mean square error of prediction; RPD, ratio of performance to standard deviation. 

Model 
Alkyl C (%) O-alkyl C (%) Aromatic C (%) Carbonyl C (%) Alkyl/O-alkyl C 

n r RPD RMSEP n r RPD RMSEP n r RPD RMSEP n r RPD RMSEP n r RPD RMSEP  

Separate NIRþP1 þ PLS 7  0.90  1.75  1.06  7  0.75  1.07  0.94 7  0.93  2.51  0.45 8  0.59  0.97  0.74 8  0.68  1.22  0.03 
NIRþP2 þ PLS 9  0.86  1.80  0.70  6  0.89  2.17  0.64 8  0.94  2.87  0.37 8  0.92  2.38  0.32 8  0.87  1.84  0.03 
NIRþP3 þ PLS 6  0.59  1.15  0.86  5  0.78  1.57  0.86 6  0.80  1.58  0.62 7  0.37  0.80  0.68 4  0.76  1.31  0.03 
NIRþP4 þ PLS 7  0.64  0.68  1.51  6  0.32  0.82  1.57 8  0.69  1.36  0.81 8  0.32  1.00  0.62 7  0.44  0.52  0.06 
MIRþP1 þ PLS 6  0.83  1.69  1.15  10  0.87  1.35  0.89 7  0.92  1.85  0.62 9  0.88  2.22  0.44 7  0.66  1.35  0.03 
MIRþP2 þ PLS 6  0.76  1.44  1.35  10  0.87  1.56  0.84 6  0.94  2.64  0.43 6  0.85  1.94  0.48 7  0.71  1.43  0.03 
MIRþP3 þ PLS 8  0.93  2.12  0.85  7  0.76  1.40  0.85 7  0.93  2.26  0.51 8  0.91  2.43  0.37 6  0.88  2.18  0.03 
MIRþP4 þ PLS 4  0.44  0.84  1.46  8  0.63  1.12  1.48 6  0.88  2.16  0.63 7  0.66  1.20  0.69 4  0.40  0.82  0.05 
NIRþP1 þ SVM /  0.91  2.02  0.91  /  0.76  1.51  0.67 /  0.91  2.26  0.50 /  0.64  1.30  0.55 /  0.84  1.83  0.02 
NIRþP2 þ SVM /  0.86  1.86  0.65  /  0.93  2.00  0.69 /  0.88  2.02  0.52 /  0.92  2.08  0.36 /  0.94  2.69  0.02 
NIRþP3 þ SVM /  0.74  1.23  0.81  /  0.74  1.43  0.94 /  0.83  1.67  0.59 /  0.34  0.99  0.64 /  0.93  1.89  0.02 
NIRþP4 þ SVM /  0.72  0.77  1.34  /  0.17  0.79  1.63 /  0.74  1.42  0.77 /  0.45  1.14  0.54 /  0.50  0.59  0.05 
MIRþP1 þ SVM /  0.88  1.98  0.98  /  0.88  2.18  0.55 /  0.90  2.07  0.56 /  0.93  2.22  0.44 /  0.83  1.79  0.02 
MIRþP2 þ SVM /  0.88  1.98  0.98  /  0.93  2.56  0.51 /  0.93  2.60  0.43 /  0.85  1.92  0.48 /  0.85  1.94  0.02 
MIRþP3 þ SVM /  0.86  1.92  0.95  /  0.92  2.62  0.45 /  0.93  2.67  0.43 /  0.95  2.03  0.45 /  0.95  2.30  0.03 
MIRþP4 þ SVM /  0.52  0.84  1.45  /  0.72  1.25  1.33 /  0.90  2.26  0.60 /  0.52  1.12  0.74 /  0.25  0.78  0.05 

Preprocessing  
method 

P1a /  0.88  1.86  1.03  /  0.81  1.53  0.76 /  0.92  2.17  0.53 /  0.76  1.68  0.54 /  0.75  1.55  0.02 
P2a /  0.84  1.77  0.92  /  0.90  2.07  0.67 /  0.92  2.53  0.44 /  0.89  2.08  0.41 /  0.84  1.98  0.02 
P3a /  0.78  1.60  0.87  /  0.80  1.75  0.78 /  0.87  2.05  0.54 /  0.64  1.56  0.54 /  0.88  1.92  0.02 
P4a /  0.58  0.78  1.44  /  0.46  1.00  1.50 /  0.80  1.80  0.70 /  0.49  1.12  0.65 /  0.40  0.68  0.05 

Regression method PLSb /  0.81  1.66  0.99  /  0.82  1.52  0.83 /  0.91  2.29  0.50 /  0.75  1.79  0.50 /  0.76  1.55  0.03 
SVMb /  0.85  1.83  0.88  /  0.86  2.05  0.63 /  0.90  2.22  0.51 /  0.77  1.76  0.49 /  0.89  2.07  0.02 

Instrument NIRc /  0.81  1.63  0.83  /  0.81  1.62  0.79 /  0.88  2.15  0.51 /  0.63  1.42  0.55 /  0.84  1.79  0.02 
MIRc /  0.86  1.85  1.04  /  0.87  1.94  0.68 /  0.93  2.35  0.50 /  0.90  2.13  0.44 /  0.81  1.83  0.03 

Regression method  
and instrument 

PLSþNIRd /  0.78  1.57  0.87  /  0.81  1.60  0.81 /  0.89  2.32  0.48 /  0.62  1.38  0.58 /  0.77  1.45  0.03 
SVMþNIRd /  0.83  1.70  0.79  /  0.81  1.65  0.77 /  0.87  1.98  0.54 /  0.63  1.46  0.52 /  0.90  2.14  0.02 
PLSþMIRd /  0.84  1.75  1.12  /  0.83  1.43  0.86 /  0.93  2.25  0.52 /  0.88  2.20  0.43 /  0.75  1.65  0.03 
SVMþMIRd /  0.87  1.96  0.97  /  0.91  2.45  0.50 /  0.92  2.45  0.47 /  0.91  2.06  0.45 /  0.88  2.01  0.02 

athe average results of two instruments combining two regression methods. 
bthe average results of three preprocessing methods (P1-P3) combining two instruments. 
cthe average results of three preprocessing methods (P1-P3) combining two regression methods. 
dthe average results of three preprocessing methods (P1-P3).   
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Performances of mid-infrared spectra + support vector 
machines regression model for SOC chemical composition 
prediction 
Given the above three comparisons, we tried to propose a best 
model for the five parameters related to SOC chemical compo-
sition in this study. By averaging the results of three pretreat-
ment methods, SVM þMIR model showed the best predictive 
performance (r ¼ 0.87–0.92, RMSEP ¼ 0.45%� 0.97% for the 
percentages of four functional groups and 0.02 for the alkyl- 
to-O-alkyl ratio, and RPD ¼ 1.96–2.45) (Table 3). Comprehen-
sively, we chose second derivative þ SPXY þMIR þ SVM 
model to predict the composition of soil organic matter 
(r ¼ 0.86, RMSEP ¼ 0.95%, and RPD ¼ 1.92 for the percentage 
of alkyl C; r ¼ 0.92, RMSEP ¼ 0.45%, and RPD ¼ 2.62 for 
the percentage of O-alkyl C; r ¼ 0.93, RMSEP ¼ 0.43%, and 
RPD ¼ 2.67 for the percentage of aromatic C; r ¼ 0.95, RMSEP ¼
0.45%, and RPD ¼ 2.03 for the percentage of carbonyl C; 
r ¼ 0.95, RMSEP ¼ 0.03, and RPD ¼ 2.30 for the alkyl-to-O- 
alkyl ratio) (Table 2, Fig. 2). The first derivative þ SPXY þMIR 
þ SVM model also had the highest prediction precisions for 
SOC content and δ13C (Fig. 1). Given the overall advantages 
of MIR over NIR and SVM over PLS, it was not surprising that 
models combining SVM with MIR outperformed the other 
three models in prediction of SOC content and composition. 

Conclusion 

Our results indicated that in addition to C content, N content, 
and the C/N ratio, the rarely reported delta 13C could also be 

excellently predicted by both NIR and MIR spectra. We were 
the first to use a non-linear regression method (i.e., SVM) to 
predict SOC composition as indicated by 13C NMR spectra. 
Our results showed that differences in IR spectral regions, pre-
processing methods, and regression methods all have large 
impacts on final results, and only an iterative process can help 
in the development of the best models. Overall, FTIR data, 
especially when MIR data are developed with SVM algorithm, 
is a useful tool to predict both SOC content and composition 
in oriental oak forest ecosystems in East China. The results 
may provide some implications for the further study of soil 
composition measurement. 
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