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Abstract: Greenhouse gas (GHG) emissions are an important part of the carbon (C) and
nitrogen (N) cycle in forest soil. However, soil greenhouse gas emissions in dawn redwood
(Metasequoia glyptostroboides) stands of different ages are poorly understood. To elucidate the effect
of plantation age and environmental factors on soil GHG emissions, we used static chamber/gas
chromatography (GC) system to measure soil GHG emissions in an alluvial island in eastern China for
two consecutive years. The soil was a source of CO2 and N2O and a sink of CH4 with annual emissions
of 5.5–7.1 Mg C ha−1 year−1, 0.15–0.36 kg N ha−1 year−1, and 1.7–4.5 kg C ha−1 year−1, respectively.
A clear exponential correlation was found between soil temperature and CO2 emission, but a negative
linear correlation was found between soil water content and CO2 emission. Soil temperature had
a significantly positive effect on CH4 uptake and N2O emission, whereas no significant correlation
was found between CH4 uptake and soil water content, and N2O emission and soil water content.
These results implied that older forest stands might cause more GHG emissions from the soil into the
atmosphere because of higher litter/root biomass and soil carbon/nitrogen content compared with
younger stands.
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1. Introduction

Establishment and management of forest plantations play an increasingly important role in
sequestrating carbon from the atmosphere as one of the major strategies for mitigating global warming.
The emissions of greenhouse gases (GHGs) are mostly related to the carbon (C) and nitrogen (N)
cycle from forest soils. Forest soils are the sink of carbon in the world and contain about 704 Pg C,
with varying C densities under different environmental conditions [1]. On the contrary, they are
also the source of N2O [1,2]. In some countries (e.g., China, India, Russian Fedration, US, Japan,
etc.), plantations represent an important part of the national forested areas, and are increasing at the
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rate of 3–4.5 million hectare per year [3]. China accounts for 24% of the global forest plantations [3].
In China, the plantation area increased by 5.1 million ha per year during the period from 2004–2008 [4];
it is expected that 40 million hectares plantation will be established within the period from 2005
to 2020 [5]. To further our understanding of the patterns of C and N cycles and influential factors,
we need to study the soil GHG emissions and their ability to mitigate global warming.

A large number of studies have been conducted about tropical forest soil GHG emissions.
For instance, soil CO2 emissions ranged from 1.45 t C ha−1 year−1 to 13.74 t C ha−1 year−1

in subtropical forests of China [6–8], to 10.80 t C ha−1 year−1 to 11.75 t C ha−1 year−1 in subtropical
Australian rainforests [9], and 25.60 t C ha−1 year−1 in tropical Thailand forests [10]. Average soil N2O
emissions varied from 1.5 kg N ha−1 year−1 to 6.07 kg N ha−1 year−1 in tropical forests [11–13].
Mean annual CH4 uptake in tropical forest ecosystems ranged from 3.33 kg C ha−1 year−1 to
57.49 kg C ha−1 year−1 [14,15], and net CH4 sinks in tropical Montane tree forests ranged from
0.6 kg C ha−1 year−1 to 5.9 kg C ha−1 year−1 in southern Ecuador [16]. These results show that there
are drastic variations in GHG emissions in specific sites across different regional biomes, thereby
suggesting that the pattern of GHG emissions and influential factors will need to be elucidated at
specific sites in the context of considering the management of plantations as a strategy of sequestrating
atmospheric CO2.

The dynamics of soil GHG emissions in forests are influenced by key factors such as soil properties,
soil temperature, soil moisture, and vegetation [15,17,18]. In previous reports, seasonal changes in
soil GHG emissions were found [19,20]. Soil CO2 and N2O emissions both displayed an increasing
trend with the progression of succession in natural forests, but no difference in CH4 emission was
observed at different succession stages [2,12]. Few reports had examined GHG emissions at differently
aged stages of plantations. Dawn redwood (Metasequoia glyptostroboides), as a living fossil tree, is
widely distributed as plantations throughout the middle and high latitudes in Eurasian and North
American continents [21]. It had high natural durability under the attack of basidomycetes infection
and high resistance against soft-rot fungi [22–24]. As a fast-growing species, Dawn redwood plays an
important role in carbon stocks and other ecosystem services. To further understand the pattern of
GHG emissions in different aged plantations and associated influential factors, soil GHG emissions
were measured at 10, 1, 7 and 32 year old dawn redwood stands for two consecutive years in this study.

These are the following objectives of this study: (1) reveal the seasonal variation of soil
GHG emissions at different age-stages of plantations; (2) show the relationship between the GHG
emissions and soil temperature, and GHG emissions and moisture; (3) determine the relative
importance of biomass, soil C and N content, soil temperature, and soil moisture on GHG emissions;
and (4) understand the role of dawn redwood stand soil as the source or sink for CO2, CH4,
and N2O at different age stages. We hypothesized that different patterns of GHG emissions could
exist in differently aged forests. This is partially due to consideration of the different assimilated
products of photosynthesis, some of which are allocated into the roots within a short time period after
photosynthesis, for example. As such, GHG emissions are not only affected by soil temperature but
are also affected by plant photosynthesis via below-ground carbon allocation.

2. Materials and Methods

2.1. Site Description

The experimental stands are located in Dongping National Forest Park (41.68◦ N, 121.48◦ E),
Chongming Island, Shanghai, China. Chongming Island, the largest alluvial island in the world,
is located in the Yangtze River Estuary, which covers an area of 1267 km2 and which currently increases
at the rate of 500 ha year−1 through Yangtze River-derived sediment [25]. During the period of
2009–2013, the mean annual temperature and precipitation of this area was 16.6 ◦C and 1072.3 mm,
respectively [26]. Rainfall is concentrated mostly on May–September (Figure 1).
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Figure 1. Monthly mean air temperature and precipitation during 2009–2013 (A); the monthly mean
temperature and precipitation from September 2011 to September 2013 (B).

Dongping National Forest Park is the largest forest farm in eastern China, with 70% of the
total area covered by dawn redwood plantations. Since the 1960s, plantations have been established
to form different aged stands. In order to examine the effects of stand age on soil GHG emission,
three different aged stands of 10, 17, and 32 years old were selected. In each stand, three plots
(20 m × 20 m) were set up in August 2011 (Table 1).

Biomass carbon storage. In 2011, all trees were counted at all sites. The height of every single
tree was determined by using a Haglöf Vertex III Ultrasonic Hypsometer. The diameter at breast height
(1.3 m above the ground) (DBH) was measured using a measuring tape. The whole tree dry biomass
was calculated by Becuwe’s allometric functions (M = 0.06291 DBH2.4841), and carbon stock in the
stands was estimated by considering the carbon contents of tree dry biomasses (around 50%) [27].

Soil properties. To determine the bulk density, pH, total carbon (C), and nitrogen (N)
concentrations of the soil in the stand, three soil samples were collected from each plot. Soil
bulk density was obtained by the volumetric ring method [28]. Soil pH was measured by 1:5
dry soil: CaCl2 solution (0.01 M) [29]. The total soil C and N concentrations were determined by
using an elemental analysis-stable isotope ratio mass spectrometer (Vario ELIII Elementar, Hessen
Langenselbold, Germany).

Table 1. Selected sites and soil characteristics for three stands in Dongping National Park,
Chongming Island.

10-Year-Old Stand 17-Year-Old Stand 32-Year-Old Stand

Tree Growth

Tree density (stems/ha) 1050 725 550
Average height (m) 8.1 ± 1.5 16.2 ± 2.2 28.3 ± 3.4
Average DBH (cm) 10.5 ± 3.1 17.5 ± 3.4 27.2 ± 3.0

Biomass carbon stock (t ha−1) 13.96 29.76 64.93

Litter (a)

Litter amount (t ha−1) 1.04 ± 0.008 2.67 ± 0.012 3.87 ± 0.027
Fallen leaf C (%) 47.35 ± 0.61 48.11 ± 0.32 47.67 ± 0.40

Fallen branch C (%) 44.40 ± 0.33 44.86 ± 0.32 46.07 ± 0.37
Fallen leaf N (%) 1.60 ± 0.09 1.84 ± 0.05 1.69 ± 0.08

Fallen branch N (%) 0.75 ± 0.04 0.63 ± 0.04 0.64 ± 0.05
Fallen leaf C:N ratio 29.6 26.1 28.2

Fallen branch C:N ratio 59.2 71.2 72.0

Soil Properties

Bulk density 1.55 ± 0.01 1.62 ± 0.01 1.62 ± 0.01
pH 8.18 ± 0.068 8.19 ± 0.097 8.12 ± 0.063

Total N (%) 0.11 ± 0.014 0.19 ± 0.038 0.22 ± 0.002
SOC (%) 0.71 1.78 1.94

Total C (%) 1.40 ± 0.014 1.85 ± 0.036 2.11 ± 0.054
C:N ratio 13 10 10

Soil carbon storage (t ha−1) 31.87 ± 2.20 37.68 ± 1.07 40.01 ± 2.49

Note: (a) The source of litter data was Xiao’s dissertation [30]. DBH, diameter at breast height; SOC, soil
organic carbon.
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2.2. Measurements

2.2.1. Soil Gas Emissions

Gas emission measurements were based on Forestry Standards “Observation Methodology for
Long-term Forest Ecosystem Research” of PR China (LY/T 1952–2011). Because the forest sites
were relatively homogeneous, three observation points were systematically arranged in each stand.
The static chamber method was employed to measure soil CO2, CH4, and N2O emissions.
Gas emissions were measured every two weeks (September 2011–September 2013).

The static chamber consisted of two parts. First, the stainless steel based part (0.5 m × 0.5 m × 0.2 m)
was permanently inserted at a 10 cm depth in the soil for each observation point of the plots, and
the second upper part was made of a polyvinyl chloride plate with a size of 0.5 m × 0.5 m × 0.5 m.
A fan was installed in each upper chamber for air mixing. Next, 30 min after closing the chamber,
gas samples were collected with a gastight syringe (100 mL) every 10 min for the next 40 min
(0, 10 min, 20 min, 30 min, and 40 min). Five gas samples at each observation point were taken
between 9:00 a.m. and 12:00 a.m. and analyzed by gas chromatography (6890N, Agilent, Santa Clara,
CA, USA) with an Electron Capture Detector (ECD) for N2O detection and an Flame Ionization
Detector (FID) for CH4 and CO2 detection [31,32]. The minimum detectable limit of CO2, CH4, and
N2O fluxes were 0.3 mg C m−2 h−1, 4.4 µg C m−2 h−1, and 0.3 µg N m−2 h−1, respectively [33].
The gas emissions were calculated by the rate of gas concentration change during sampling.
The calculation details were as follows.

F =
dC
dt

× mPV
ART

= H × dC
dt

× mP
RT

(1)

where F is the gas emissions (mg m−2 h−1 for CO2 and CH4, and µg m−2 h−1 for N2O), and dC
dt

(µL L−1 min−1 for CO2 and CH4, and nL L−1 min−1 for N2O) is the emission rate of CO2, CH4,
or N2O concentration in the chamber. A linear regression is used to calculate the emission rate. The m
(g mol−1) is the molecular weight of trace gas. P indicates the atmospheric pressure
(P = 1.013 × 105 Pa). R is the gas constant (R = 8.314 J mol−1 K−1). T (K) is the air temperature
in the chamber. V (cm3), H (cm), and A (cm2) are the volume, height, and area of the static
chamber, respectively.

2.2.2. Soil Temperature and Soil Water Content

The probe of digital thermometer JM 624 (Jinming Insturment Co., LTD, Tianjin, China) was
inserted at 5 and 10 cm soil depth to detect the soil temperature on the outside of each chamber when
we collected the gas samples. Soil samples were taken by soil auger from 0 cm to 10 cm and 10 cm to
20 cm depths to determine soil water contents gravimetrically by measuring the fresh and dry weights
after drying in an oven at 105 ◦C for two days.

2.3. Data Analysis

Generally, the growing season of dawn redwood in Shanghai is from May to November, and the
non-growing season is from December to April. We split our observed data into two parts according
to the growing or non-growing season to determine whether soil respiration increases simultaneously
with increasing photosynthesis.

2.3.1. Q10 Values

The temperature sensitivity of the soil respiration rate at the three stands was calculated by a
non-linear regression model with the van’t Hoff function, as follows:

RS = αeβT, (2)
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where RS is the soil respiration (mg CO2 m−2 h−1), α and β are fitted constants, and T is soil
temperature, which was measured at 5 cm and 10 cm depths in the soil [34,35]. Q10 is the
factor explaining the temperature sensitivity of soil respiration, and it is calculated as follows:
Q10 = e10β [36,37].

2.3.2. The Relationship between GHG Emissions and Environmental Factors

One-sample Kolmogorov-Smirnov testing was used to determine whether the GHG emissions,
soil temperature, and soil moisture were normally distributed. Soil temperature and soil moisture
were normally distributed. Data variation among the sites was tested for significance by using the
Duncan test following ANOVA. Pearson correlation analyses were used to analyze the relationship
between greenhouse gas and the environment factors. Statistical analysis was conducted using IBM
SPSS Statistics 21 software.

Canonical correspondence analysis (CCA) was conducting by using the CCA procedure in
PAST 3 to detect the relationship between soil GHG emissions and environmental factors, such as
soil temperature, soil water content, soil C and N concentration, and foliage C and N concentrations.
A plot of the first two canonical variables (Can 1 and Can 2) was made to visually show the correlation
among gases and environmental variables.

3. Results

3.1. Soil Respiration Rate

During the experimental period of 2011 to 2013, the mean CO2 emission rate was
228.30 ± 142.40 mg m−2 h−1, 238.14 ± 142.20 mg m−2 h−1, and 297.71 ± 218.09 mg m−2 h−1 in
the 10, 17, and 32-year-old stands, respectively (Table 2). Maximum soil CO2 emissions were observed
in May and August in every year, and the smallest emissions in January and February (Figure 2).
The mean soil CO2 emissions were 346.47 ± 164.23 mg m−2 h−1 and 117.09 ± 52.34 mg m−2 h−1 in the
growing season and non-growing season, respectively (Figure 3).

Table 2. Average forest soil CO2, CH4, and N2O emissions measured in the 10, 17, and 32-year-old
stands during the period from 2011–2013.

Stand Age 2011–2012 2012–2013 2011–2013

CH4 (mg m−2 h−1)
10 −0.030 ± 0.029 b −0.021 ± 0.016 b −0.026 ± 0.024 b
17 −0.035 ± 0.059 b −0.030 ± 0.025 b −0.032± 0.045 b
32 −0.081 ± 0.093 a −0.056 ± 0.049 a −0.069 ± 0.075 a

CO2 (mg m−2 h−1)
10 233.35 ± 152.28 a 223.25 ± 134.76 a 228.30 ± 142.40 a
17 250.42 ± 146.93 a 225.86 ± 139.22 a 238.14±142.20 a
32 322.40 ± 241.16 a 273.01 ± 194.12 a 297.71 ± 218.09 a

N2O (µg m−2 h−1)
10 7.17 ± 16.12 a 3.40 ± 6.05 a 5.29 ± 12.20 a
17 15.79 ± 29.95 a 4.38 ± 6.68 a 10.09 ± 22.23 a
32 15.46 ± 19.23 a 9.04 ± 7.56 b 12.25 ± 14.82 a

Note: The periods of 2011–2012 and 2012–2013 are 15 September 2011–1 September 2012 and 14 September
2012–2 September 2013, respectively. The contents in this table refer to mean average greenhouse gas
emissions ± standard deviation. Different lower case letters after these contents indicate significant differences
between the treatments, each with p < 0.05.
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2011–2013. The error bars shown in the figure are standard deviations.

3.2. Soil CH4 Uptake

The soil was a sink of CH4 in all three stands, with the highest uptake of CH4 occurring in
the summer (Figure 2). During 2011–2013, the mean soil CH4 uptake rates were 0.026 mg m−2 h−1,
0.032 mg m−2 h−1, and 0.069 mg m−2 h−1 in the 10, 17, and 32-year-old stands, respectively (Table 2).
The CH4 uptake rates were significantly higher in the older stand compared to the younger stands
(p < 0.05). The highest CH4 uptakes were measured in the growing season (Figure 3).

3.3. Soil N2O Emission

There were large differences in N2O emissions among the three stands, ranging from −19.78 µg m−2 h−1

to 65.39 µg m−2 h−1, −13.02 µg m−2 h−1 to 138.00 µg m−2 h−1, and −6.98 µg m−2 h−1 to
93.45 µg m−2 h−1 in the 10, 17, and 32-year-old stands, respectively (Figure 2). The mean N2O
emissions were 5.29, 10.09, and 12.25 µg m−2 h−1, respectively (Table 2), thereby showing that the
older stand had larger N2O emissions compared with the younger stands, but it was not significant
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(p = 0.113). The N2O emissions were higher during the growing season compared to the non-growing
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to 30 April), respectively. (A–C) in the upper-right corner represent the greenhouse gas (GHG)
emissions during the whole year; (D–F) represent the GHG emissions during the growing season;
and (G–I) represent the GHG emissions during the non-growing season.

3.4. Annual GHG Emissions

The annual CO2 emissions were significantly higher in the 32-year-old stand compared to the
other two younger stands (p < 0.05) (Figure 4). The emissions were 23.3% and 20.0% higher in the
32-year-old stand than those in the 10 and 17-year-old stands, respectively. Moreover, the annual soil
CH4 uptake had significant differences among the three stands. The annual CH4 uptake was highest
in the 32-year-old stand and lowest in the 10-year-old stand.

The highest annual soil N2O emission was observed in the 32-year-old stand and we noted that
the 32-year-old stand had a 56.8% higher annual N2O emission than the 10-year-old stand and a 17.7%
higher annual emission than the 17-year-old stand. However, the N2O emissions among the three
stands were not significantly different.
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3.5. The Effect of Soil Temperature on GHG Emissions

In this research, soil CO2 emissions increased exponentially with soil temperature both at 5 cm
and at 10 cm soil depths (RS = 62.78e0.075T at 5 cm soil depth, and RS = 61.89e0.077T at 10 cm soil depth).
The exponential model could explain 68% or 69% (p < 0.001) of the seasonal variation in soil CO2
emissions (Table 3). The Q10 values were calculated to be 2.12 and 2.15 at 5 cm and at 10 cm soil depths,
respectively (Table 3). Usually, Q10-values were almost 3%–51% higher in the non-growing season
than in the growing season.

Table 3. Parameters of the exponential model for soil CO2 emissions as a function of soil temperature
at 5 and 10 cm depths in the three stands.

Sites 10-Year-Old Stand 17-Year-Old Stand 32-Year-Old Stand Three Stands

Soil Depth (cm) 5 10 5 10 5 10 5 10

Whole
Year

R2 0.58 0.65 0.72 0.66 0.79 0.78 0.68 0.69
α 67.61 59.71 62.01 65.99 58.23 60.60 62.78 61.89
β 0.0659 0.0752 0.0732 0.0689 0.0872 0.0856 0.0752 0.0767

Q10 1.93 2.12 2.08 1.99 2.39 2.35 2.12 2.15

Growing
Season

R2 0.24 0.23 0.36 0.23 0.52 0.51 0.36 0.69
α 132.36 129.40 89.30 113.75 77.02 84.09 96.82 61.89
β 0.0383 0.0397 0.0569 0.0448 0.0746 0.0708 0.0568 0.0767

Q10 1.47 1.49 1.77 1.57 2.11 2.03 1.76 2.15

Non-growing
Season

R2 0.18 0.33 0.59 0.54 0.61 0.57 0.35 0.69
α 71.56 51.86 55.85 55.52 53.15 52.70 65.24 61.89
β 0.036 0.0811 0.0808 0.0824 0.0947 0.0986 0.0599 0.0767

Q10 1.43 2.25 2.24 2.28 2.58 2.68 1.82 2.15

CH4 uptakes and N2O emissions were significantly correlated with soil temperature at
both 5 cm and 10 cm depths. There was a positive correlation between the CH4 uptake and soil
temperature (Pearson correlation, −0.3). In addition, N2O and soil temperature had a positive
correlation (Pearson Correlation, 0.3) (shown in Table 4).

Table 4. Pearson correlation coefficients between greenhouse gas and soil temperature and
water content.

CH4 CO2 N2O T 5 cm T 10 cm SWC 0–10 cm SWC 10–20 cm

CH4 1.000 −0.377 ** −0.041 −0.301 ** −0.317 ** −0.012 0.169
CO2 1.000 0.380 ** 0.765 ** 0.776 ** −0.211 * −0.276 **
N2O 1.000 0.274 ** 0.274 ** 0.141 −0.047

T 5 cm 1.000 0.972 ** −0.319 ** −0.364 **
T 10 cm 1.000 −0.324 ** −0.385 **

SWC 0–10 cm 1.000 0.671 **
SWC 10–20 cm 1.000

Note: ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level
(2-tailed). T 5 cm and T 10 cm mean soil temperature at 5 cm soil depth and at 10 cm soil depth, respectively.
SWC 0–10 cm and SWC 10–20 cm mean soil water content at 0–10 cm soil depth and at 10–20 cm soil
depth, respectively.
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3.6. Effects of Soil Water Content on GHG Emissions

Soil water content contributed substantially to the GHG emissions. The relationship between soil
CO2 emissions and soil water content at both 0–10 cm and 10–20 cm depths was negative. However,
no significant relationship was found between CH4 emission and soil water content, or N2O emission
and soil water content. (Table 4).

3.7. The Main Influencing Factors of Soil Greenhouse Gas Emissions

The variations in vegetation carbon, nitrogen, and soil properties were described by two significant
canonical components (explaining 100% of the variance) (Figure 5). The first, Can 1, accounted for
98.65% of the total variance and was highly related to the trees’ biomass, and C and N content in
soil and foliage. Can 2 accounted for 1.21% of the total variance with close correlation among soil
water content and soil temperature. The CO2 and N2O emissions, and CH4 uptake all have positive
correlations with Can 1 and negative correlations with Can 2.
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length indicates the overall contribution of the variables to the analysis, and vector direction indicates
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4. Discussion

4.1. Soil Carbon Dynamic in Different-Age Stands

The soil was a source of CO2 and sink of CH4 in the three stands in both growing and
non-growing seasons. The annual soil CO2 emissions (5.5–7.1 Mg C ha−1 year−1) were within
the same range observed in other subtropical forests. For instance, annual soil CO2 emission was
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3.1–7.3 Mg C ha−1 year−1 in the seasonal tropical primary forests in Xishuangbanna region,
southwest China, and from 3.1–7.3 to 11.1–12.0 Mg C ha−1 year−1 in the subtropical forests [9,38].
In subtropical and tropical forests, annual soil CH4 uptake rates ranged from 0.8 kg C ha−1 year−1 to
4.3 kg C ha−1 year−1 [12,16,39]. Our study showed a similar uptake (1.7 kg C ha−1 year−1 to
4.5 kg C ha−1 year−1) in plantations located in northern subtropical areas, thereby suggesting that
annual CH4 uptake does not significantly vary with subtropical or tropical biomes.

Soil CO2 significantly varied with soil temperature and water content in the three stands in both
growing and non-growing seasons. A positive relationship existed between soil temperature and CO2
emission in these three stands, and a negative relationship was found between soil water content
and CO2 emission. The effects of soil temperature and soil water content on CO2 emissions were
statistically confounded. As such, we excluded the soil temperature effect through normalizing the
soil respiration values with RS = 62.78e0.075T at 5 cm soil depth and RS = 61.89e0.077T at 10 cm soil
depth, and found that the effect of soil water content on CO2 emissions was not significantly negative
(with Pearson correlation from −0.18 to −0.19). Respiration rates generally decreased with decreasing
water content. Soil temperature was probably the key factor regulating soil respiration. However, soil
water content also restricted soil respiration [40]. Both soil CO2 emission and CH4 uptake peaked in
the period of May–November because of the wet-hot climate. The laboratory and field studies have
verified that soil temperature and soil water content could account for most of the seasonal variation
in soil CO2 emission and CH4 uptake [40–42].

Soil temperature and water content explained 76%–87% of soil CO2 emission and 67%–75% of
total annual emission in the wet season (April to September) of lower subtropical forests [6]. Q10,
an exponential relationship, has been commonly used to estimate soil respiration rates from soil
temperature [36]. In previous literature, the mean Q10 values were 2.14 for tropical regions and 2.26
for temperate regions [43]. In our study, Q10 ranged from 1.9 to 2.4 during the whole year, and soil
respiration in the non-growing season was more sensitive to soil temperature. The higher Q10 in the
non-growing season could be associated with the phonological cycle of photosynthesis as compared to
the growing season, which has consequences on the belowground carbon allocation. In the summer,
about 50% or more of the soil CO2 emissions could be originated from recently assimilated C, which
trees allocate to the belowground system (root and rhizosphere) [44]. The values of Q10 increased with
soil depth, and this result was the same as that obtained by Pavelka [45]. The seasonal variation in
soil temperature was lower in the deeper layers and soil respiration rate was relatively more sensitive
to temperature fluctuations [46]. During the growing and non-growing seasons the different values
of Q10 were noted with different R2 values, and the lower R2 values were calculated in the growing
season. During the growing season, soil temperature causes little changes in soil CO2 emissions.
The primary reason might be the low temperature amplitude during the growing season. Second,
the other factors (except soil temperature) could explain the soil CO2 emission such as the changes in
photosynthesis and precipitation.

The soil temperature positively affected CH4 uptake, and no significant relationship existed
between CH4 uptake and soil water content. Kiese and Werner observed that CH4 uptake was
negatively correlated with soil temperature and soil water content [38,39]. In mid-subtropical China,
the highest CH4 uptake (17.12 g C ha−1 day−1) occurred in the summer-autumn season with increasing
soil temperature and water content, but the relationships between CH4 uptake and soil temperature
and CH4 uptake and soil water content were not significant [47]. In earlier studies, CH4 uptake
had decreased with increasing soil water content during the summer season [48,49]. Maximum CH4
uptake rate was clearly associated with the lowest soil moisture and the highest soil temperature
both in temperate and tropical forests [50]. Before oxidization by methanotrophs, the soil CH4
was emitted from anaerobic environments to the atmosphere. In the forest’s soil, a certain amount
of CH4 from the atmosphere was consumed by methanotrophs [51]. The optimum conditions for
growth of methanotrophic bacteria and induction of methane oxidation activity were 20%–35% water
contents and 25 ◦C–35 ◦C temperatures [52]. In our study, the water content ranged from 11% to 33%,
which was almost in the optimum range, and temperatures showed a larger range from 1.4 ◦C to
30 ◦C. Soil temperature could be more important than water content in regulating CH4 consumption
in this study, which is in agreement with the results of previous reports [53].
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4.2. Soil Nitrogen Dynamic in Different-Aged Stands

We observed highly dynamic N2O emissions with low values in our study
(i.e., 0.81–1.87 g N ha−1 day−1), which were lower than some previously reported emissions.
For example, our results are similar to the N2O emissions from undrained forests in southern Sweden
(i.e., 1.62 g N ha−1 day−1) [54], but they are substantially lower than the 8.77 g N ha−1 day−1

previously recorded in the subtropical forest in southern China [12].
A seasonal variation in N2O emissions has been reported in tropical and subtropical forests.

For instance, the highest N2O emissions have been observed during the spring and summer months
with mean values of 2–5 g N ha−1 day−1. The lowest emissions were obtained during winter
seasons, with less than 0.5 g N ha−1 day−1 [9]. The higher N2O emissions were emitted from
temperate and tropical forest ecosystems during the wet and hot season [50]. The magnitude of
N2O emissions was very closely linked to rainfall events [55]. The soil N2O was produced by microbes
through nitrification in aerobic conditions and through denitrification under anaerobic conditions [56].
Factor, such as precipitation, was observed to exert some influence on the soil aeration, but soil
aeration could affect N2O production. In our study, the highest soil N2O emissions were observed
between May and November when higher rainfall occurred with a mean value of 2.04 g N ha−1

day−1. The lowest soil N2O emissions were recorded between December and April with a mean value
of 0.75 g N ha−1 day−1.

N2O emissions showed a positive correlation with soil temperature; no significant correlation with
soil water content was observed, which was similar to a previous study in Japan [57]. However, some
previous reports have shown that N2O emissions have a positive correlation with soil temperature
and soil water content [42].

4.3. Factors Affecting Soil Greenhouse Gas Emissions

The present study showed that soil GHG emissions differed among the three stands.
The 32-year-old stand had significantly higher CO2 emissions, CH4 uptake, and N2O emissions
than the 10 and 17-year-old stands. Basically, these three stands differed in biomass/litter carbon
storage, nitrogen content, and soil properties. The soil CO2, N2O, and CH4 were produced by microbial
activity, and these processes were controlled by environmental factors [58,59].

Forest soil CO2 emissions were the sum of heterotrophic (microbes) and autotrophic respiration
(roots), and the contribution of root respiration rates which were higher during the growing season [60].
The soil CO2 emissions were a good indicator of total below-ground allocation of carbon and of
ecosystem productivity. Among these stands, the older stands maintained higher productivity than
the younger stands; it was not surprising that the older stand had the highest rates of soil respiration.
Older stands released higher CO2, and the major difference was that the older stand had higher
soil carbon, which could probably reflect higher root and litter carbon storage [61]. The research in
Loess Plateau of China [62] indicated that 48% of the variations in annual soil CO2 emissions were
explained by the combined carbon stock in top soil and litter, 77% by the root carbon stock, and 63%
by the combined carbon stock in roots, litter, and top soil. The aboveground litter mineralization and
decomposition contributed to about 8% of the soil respiration in a subtropical Montane cloud forest
in Taiwan [63]. In our study, the total carbon storage of litter, soil, and roots in the older stands was
higher than the two younger stands, which indicated higher annual CO2 emissions in the older stands.
Based on the principal component analyses, the litter composition was an important stimulator for soil
CO2 emissions because of the simultaneous effects on production and consumption of the soil surface
organic matter [64].

Methane emissions of soils were correlated with microbial activities, and the upper soil layer
were generally CH4 sinks [65]. The rate of CH4 uptake was regulated by the soil C and N levels as
well as soil water content, and there was a close link between labile C, N, and CH4 uptake in forest
soils [66,67]. This research has shown that carbon and nitrogen contents of litter, soil, and root in older
stands were higher than in younger stands, which indicates higher annual CH4 uptake in older stands.
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In contrast to the pattern of soil CO2 and CH4 emissions, no distinctly different trend in N2O
emission was observed among differently aged stands. According to the reported study, soil N2O
production and consumption were mainly influenced by the amount of mineral N in soils, and low
N availability was linked with N2O emissions [2]. Highly dynamic emissions of N2O were found
among different forest soil types [68]. The primary controlling factors of N2O production were found
to be soil pH and C/N ratio, and these soil properties could explain most of the variability of N2O
emissions [9,69]. However, we used three stands in our study but the results indicating similar annual
N2O emissions despite the different soil properties.

5. Conclusions

Soil respiration in each of the stands was strongly and positively related to soil temperature, and
negatively related to soil water content. The soil CH4 uptake was positively related to soil temperature,
and soil N2O emission had a positive relation with soil temperature. Affected by the annual climatic
conditions (e.g., temperature and precipitation), soil respiration showed a clear seasonal variation,
with high emissions in the wet-hot season (from May to November) and low emissions in the dry-cool
season (from December to April).

Different stages of forest stands strongly affected soil respiration and CH4 emission rates through
root respiration and/or microbial activities, but had no significant relationship with soil N2O emission.
Carbon storage, nitrogen, and C/N ratio (soil, litter, and root) were the main factors affecting CH4
uptake and N2O emission. Soil properties such as soil water content and soil pH were important
indicators for soil respiration.
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